94 research outputs found
Highly-sensitive superconducting quantum interference proximity transistor
We report the design and implementation of a high-performance superconducting
quantum interference proximity transistor (SQUIPT) based on aluminum-copper
(Al-Cu) technology. With the adoption of a thin and short copper nanowire we
demostrate full phase-driven modulation of the proximity-induced minigap in the
normal metal density of states. Under optimal bias we record unprecedently high
flux-to-voltage (up to 3 mV/) and flux-to-current (exceeding 100
nA/) transfer function values at sub-Kelvin temperatures, where
is the flux quantum. The best magnetic flux resolution (as low as 500
n at 240 mK, being limited by the room temperature
pre-amplification stage) is reached under fixed current bias. These figures of
merit combined with ultra-low power dissipation and micrometer-size dimensions
make this mesoscopic interferometer attractive for low-temperature applications
such as the investigation of the magnetization of small spin populations.Comment: 7 pages, 5 color figure
Interacting electrodynamics of short coherent conductors in quantum circuits
When combining lumped mesoscopic electronic components to form a circuit,
quantum fluctuations of electrical quantities lead to a non-linear
electromagnetic interaction between the components that is not generally
understood. The Landauer-B\"uttiker formalism that is frequently used to
describe non-interacting coherent mesoscopic components is not directly suited
to describe such circuits since it assumes perfect voltage bias, i.e. the
absence of fluctuations. Here, we show that for short coherent conductors of
arbitrary transmission, the Landauer-B\"uttiker formalism can be extended to
take into account quantum voltage fluctuations similarly to what is done for
tunnel junctions. The electrodynamics of the whole circuit is then formally
worked out disregarding the non-Gaussianity of fluctuations. This reveals how
the aforementioned non-linear interaction operates in short coherent
conductors: voltage fluctuations induce a reduction of conductance through the
phenomenon of dynamical Coulomb blockade but they also modify their internal
density of states leading to an additional electrostatic modification of the
transmission. Using this approach we can account quantitatively for conductance
measurements performed on Quantum Point Contacts in series with impedances of
the order of . Our work should enable a better engineering of
quantum circuits with targeted properties
Tuning Energy Relaxation along Quantum Hall Channels
The chiral edge channels in the quantum Hall regime are considered ideal
ballistic quantum channels, and have quantum information processing
potentialities. Here, we demonstrate experimentally, at filling factor 2, the
efficient tuning of the energy relaxation that limits quantum coherence and
permits the return toward equilibrium. Energy relaxation along an edge channel
is controllably enhanced by increasing its transmission toward a floating ohmic
contact, in quantitative agreement with predictions. Moreover, by forming a
closed inner edge channel loop, we freeze energy exchanges in the outer
channel. This result also elucidates the inelastic mechanisms at work at
filling factor 2, informing us in particular that those within the outer edge
channel are negligible.Comment: 8 pages including supplementary materia
Dynamical Coulomb Blockade of Shot Noise
We observe the suppression of the finite frequency shot-noise produced by a
voltage biased tunnel junction due to its interaction with a single
electromagnetic mode of high impedance. The tunnel junction is embedded in a
quarter wavelength resonator containing a dense SQUID array providing it with a
characteristic impedance in the kOhms range and a resonant frequency tunable in
the 4-6 GHz range. Such high impedance gives rise to a sizeable Coulomb
blockade on the tunnel junction (roughly 30% reduction in the differential
conductance) and allows an efficient measurement of the spectral density of the
current fluctuations at the resonator frequency. The observed blockade of
shot-noise is found in agreement with an extension of the dynamical Coulomb
blockade theory
Antibunched photons emitted by a dc-biased Josephson junction
We show experimentally that a dc biased Josephson junction in series with a high-enough-impedance microwave resonator emits antibunched photons. Our resonator is made of a simple microfabricated spiral coil that resonates at 4.4 GHz and reaches a 1.97kΩ characteristic impedance. The second order correlation function of the power leaking out of the resonator drops down to 0.3 at zero delay, which demonstrates the antibunching of the photons emitted by the circuit at a rate of 6×10^7 photons per second. Results are found in quantitative agreement with our theoretical predictions. This simple scheme could offer an efficient and bright single-photon source in the microwave domain
Energy Relaxation in the Integer Quantum Hall Regime
We investigate the energy exchanges along an electronic quantum channel
realized in the integer quantum Hall regime at filling factor . One of
the two edge channels is driven out-of-equilibrium and the resulting electronic
energy distribution is measured in the outer channel, after several propagation
lengths mm. Whereas there are no discernable energy
transfers toward thermalized states, we find efficient energy redistribution
between the two channels without particle exchanges. At long distances
m, the measured energy distribution is a hot Fermi function whose
temperature is lower than expected for two interacting channels, which suggests
the contribution of extra degrees of freedom. The observed short energy
relaxation length challenges the usual description of quantum Hall excitations
as quasiparticles localized in one edge channel.Comment: To be published in PRL, 10 pages including supplementary materia
Local Thermometry of Neutral Modes on the Quantum Hall Edge
A system of electrons in two dimensions and strong magnetic fields can be
tuned to create a gapped 2D system with one dimensional channels along the
edge. Interactions among these edge modes can lead to independent transport of
charge and heat, even in opposite directions. Measuring the chirality and
transport properties of these charge and heat modes can reveal otherwise hidden
structure in the edge. Here, we heat the outer edge of such a quantum Hall
system using a quantum point contact. By placing quantum dots upstream and
downstream along the edge of the heater, we can measure both the chemical
potential and temperature of that edge to study charge and heat transport,
respectively. We find that charge is transported exclusively downstream, but
heat can be transported upstream when the edge has additional structure related
to fractional quantum Hall physics.Comment: 24 pages, 18 figure
Fluctuation-Dissipation Relations of a Tunnel Junction Driven by a Quantum Circuit
We derive fluctuation-dissipation relations for a tunnel junction driven by a
high impedance microwave resonator, displaying strong quantum fluctuations. We
find that the fluctuation-dissipation relations derived for classical forces
hold, provided the effect of the circuit's quantum fluctuations is incorporated
into a modified non-linear curve. We also demonstrate that all
quantities measured under a coherent time dependent bias can be reconstructed
from their dc counterpart with a photo-assisted tunneling relation. We confirm
these predictions by implementing the circuit and measuring the dc current
through the junction, its high frequency admittance and its current noise at
the frequency of the resonator.Comment: Publisehd as Physical Review Letters, 114, 12680
Experimental Test of the Dynamical Coulomb Blockade Theory for Short Coherent Conductors
We observed the recently predicted quantum suppression of dynamical Coulomb
blockade on short coherent conductors by measuring the conductance of a quantum
point contact embedded in a tunable on-chip circuit. Taking advantage of the
circuit modularity we measured most parameters used by the theory. This allowed
us to perform a reliable and quantitative experimental test of the theory.
Dynamical Coulomb blockade corrections, probed up to the second conductance
plateau of the quantum point contact, are found to be accurately normalized by
the same Fano factor as quantum shot noise, in excellent agreement with the
theoretical predictions.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
Generation of energy selective excitations in quantum Hall edge states
We operate an on-demand source of single electrons in high perpendicular
magnetic fields up to 30T, corresponding to a filling factor below 1/3. The
device extracts and emits single charges at a tunable energy from and to a
two-dimensional electron gas, brought into well defined integer and fractional
quantum Hall (QH) states. It can therefore be used for sensitive electrical
transport studies, e.g. of excitations and relaxation processes in QH edge
states
- …