12,173 research outputs found

    Elliptical beams

    Get PDF
    A very general beam solution of the paraxial wave equation in elliptic cylindrical coordinates is presented. We call such a field an elliptic beam (EB). The complex amplitude of the EB is described by either the generalized Ince functions or the Whittaker-Hill functions and is characterized by four parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integrability are studied in detail. Special cases of the EB are the standard, elegant, and generalized Ince-Gauss beams, Mathieu-Gauss beams, among others

    Normalization of the Mathieu-Gauss optical beams

    Get PDF
    A series scheme is discussed for the determination of the normalization constants of the even and odd Mathieu-Gauss (MG) optical beams. We apply a suitable expansion in terms of Bessel-Gauss (BG) beams and also answer the question of how many BG beams should be used to synthesize a MG beam within a tolerance. The structure of the normalization factors ensures that MG beams will always be normalized independently of the particular normalization adopted for the Mathieu functions. In this scheme, the normalization constants are expressed as rapidly convergent series that can be calculated to an arbitrary precision

    Comment on 'Exact solution of resonant modes in a rectangular resonator'

    Get PDF
    We comment on the recent Letter by J. Wu and A. Liu [Opt. Lett. 31, 1720 (2006)] in which an exact scalar solution to the resonant modes and the resonant frequencies in a two-dimensional rectangular microcavity were presented. The analysis is incorrect because (a) the field solutions were imposed to satisfy simultaneously both Dirichlet and Neumann boundary conditions at the four sides of the rectangle, leading to an overdetermined problem, and (b) the modes in the cavity were expanded using an incorrect series ansatz, leading to an expression for the mode fields that does not satisfy the Helmholtz equation

    Airy-Gauss beams and their transformation by paraxial optical systems

    Get PDF
    We introduce the generalized Airy-Gauss (AiG) beams and analyze their propagation through optical systems described by ABCD matrices with complex elements in general. The transverse mathematical structure of the AiG beams is form-invariant under paraxial transformations. The conditions for square integrability of the beams are studied in detail. The model of the AiG beam describes in a more realistic way the propagation of the Airy wave packets because AiG beams carry finite power, retain the nondiffracting propagation properties within a finite propagation distance, and can be realized experimentally to a very good approximation

    String dynamics in cosmological and black hole backgrounds: The null string expansion

    Get PDF
    We study the classical dynamics of a bosonic string in the DD--dimensional flat Friedmann--Robertson--Walker and Schwarzschild backgrounds. We make a perturbative development in the string coordinates around a {\it null} string configuration; the background geometry is taken into account exactly. In the cosmological case we uncouple and solve the first order fluctuations; the string time evolution with the conformal gauge world-sheet τ\tau--coordinate is given by X0(σ,τ)=q(σ)τ11+2β+c2B0(σ,τ)+X^0(\sigma, \tau)=q(\sigma)\tau^{1\over1+2\beta}+c^2B^0(\sigma, \tau)+\cdots, B0(σ,τ)=kbk(σ)τkB^0(\sigma,\tau)=\sum_k b_k(\sigma)\tau^k where bk(σ)b_k(\sigma) are given by Eqs.\ (3.15), and β\beta is the exponent of the conformal factor in the Friedmann--Robertson--Walker metric, i.e. RηβR\sim\eta^\beta. The string proper size, at first order in the fluctuations, grows like the conformal factor R(η)R(\eta) and the string energy--momentum tensor corresponds to that of a null fluid. For a string in the black hole background, we study the planar case, but keep the dimensionality of the spacetime DD generic. In the null string expansion, the radial, azimuthal, and time coordinates (r,ϕ,t)(r,\phi,t) are r=nAn1(σ)(τ)2n/(D+1) ,r=\sum_n A^1_{n}(\sigma)(-\tau)^{2n/(D+1)}~, ϕ=nAn3(σ)(τ)(D5+2n)/(D+1) ,\phi=\sum_n A^3_{n}(\sigma)(-\tau)^{(D-5+2n)/(D+1)}~, and t=nAn0(σ)(τ)1+2n(D3)/(D+1) .t=\sum_n A^0_{n} (\sigma)(-\tau)^{1+2n(D-3)/(D+1)}~. The first terms of the series represent a {\it generic} approach to the Schwarzschild singularity at r=0r=0. First and higher order string perturbations contribute with higher powers of τ\tau. The integrated string energy-momentum tensor corresponds to that of a null fluid in D1D-1 dimensions. As the string approaches the r=0r=0 singularity its proper size grows indefinitely like (τ)(D3)/(D+1)\sim(-\tau)^{-(D-3)/(D+1)}. We end the paper giving three particular exact string solutions inside the black hole.Comment: 17 pages, REVTEX, no figure

    Self-organized evolution in socio-economic environments

    Get PDF
    We propose a general scenario to analyze social and economic changes in modern environments. We illustrate the ideas with a model that incorporating the main trends is simple enough to extract analytical results and, at the same time, sufficiently complex to display a rich dynamic behavior. Our study shows that there exists a macroscopic observable that is maximized in a regime where the system is critical, in the sense that the distribution of events follow power-laws. Computer simulations show that, in addition, the system always self-organizes to achieve the optimal performance in the stationary state.Comment: 4 pages RevTeX; needs epsf.sty and rotate.sty; submitted to Phys Rev Let

    Multi-String Solutions by Soliton Methods in De Sitter Spacetime

    Get PDF
    {\bf Exact} solutions of the string equations of motion and constraints are {\bf systematically} constructed in de Sitter spacetime using the dressing method of soliton theory. The string dynamics in de Sitter spacetime is integrable due to the associated linear system. We start from an exact string solution q(0)q_{(0)} and the associated solution of the linear system Ψ(0)(λ)\Psi^{(0)} (\lambda), and we construct a new solution Ψ(λ)\Psi(\lambda) differing from Ψ(0)(λ)\Psi^{(0)}(\lambda) by a rational matrix in λ\lambda with at least four poles λ0,1/λ0,λ0,1/λ0\lambda_{0},1/\lambda_{0},\lambda_{0}^*,1/\lambda_{0}^*. The periodi- city condition for closed strings restrict λ0\lambda _{0} to discrete values expressed in terms of Pythagorean numbers. Here we explicitly construct solu- tions depending on (2+1)(2+1)-spacetime coordinates, two arbitrary complex numbers (the 'polarization vector') and two integers (n,m)(n,m) which determine the string windings in the space. The solutions are depicted in the hyperboloid coor- dinates qq and in comoving coordinates with the cosmic time TT. Despite of the fact that we have a single world sheet, our solutions describe {\bf multi- ple}(here five) different and independent strings; the world sheet time τ\tau turns to be a multivalued function of TT.(This has no analogue in flat space- time).One string is stable (its proper size tends to a constant for TT\to\infty , and its comoving size contracts); the other strings are unstable (their proper sizes blow up for TT\to\infty, while their comoving sizes tend to cons- tants). These solutions (even the stable strings) do not oscillate in time. The interpretation of these solutions and their dynamics in terms of the sinh- Gordon model is particularly enlighting.Comment: 25 pages, latex. LPTHE 93-44. Figures available from the auhors under reques

    Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water

    Full text link
    We present a local order parameter based on the standard Steinhardt-Ten Wolde approach that is capable both of tracking and of driving homogeneous ice nucleation in simulations of all-atom models of water. We demonstrate that it is capable of forcing the growth of ice nuclei in supercooled liquid water simulated using the TIP4P/2005 model using overbiassed umbrella sampling Monte Carlo simulations. However, even with such an order parameter, the dynamics of ice growth in deeply supercooled liquid water in all-atom models of water are shown to be very slow, and so the computation of free energy landscapes and nucleation rates remains extremely challenging.Comment: This version incorporates the minor changes made to the paper following peer revie
    corecore