730 research outputs found

    Ewald methods for inverse power-law interactions in tridimensional and quasi-two dimensional systems

    Full text link
    In this paper, we derive the Ewald method for inverse power-law interactions in quasi-two dimensional systems. The derivation is done by using two different analytical methods. The first uses the Parry's limit, that considers the Ewald methods for quasi-two dimensional systems as a limit of the Ewald methods for tridimensional systems, the second uses Poisson-Jacobi identities for lattice sums. Taking into account the equivalence of both derivations, we obtain a new analytical Fourier transform intregral involving incomplete gamma function. Energies of the generalized restrictive primitive model of electrolytes (η\eta-RPM) and of the generalized one component plasma model (η\eta-OCP) are given for the tridimensional, quasi-two dimensional and monolayers systems. Few numerical results, using Monte-Carlo simulations, for η\eta-RPM and η\eta-OCP monolayers systems are reported.Comment: to be published in Journal of Physics A: Mathematical and Theoretical (19 pages, 2 figures and 3 tables

    Microscopic mechanisms of thermal and driven diffusion of non rigid molecules on surfaces

    Get PDF
    The motion of molecules on solid surfaces is of interest for technological applications such as catalysis and lubrication, but it is also a theoretical challenge at a more fundamental level. The concept of activation barriers is very convenient for the interpretation of experiments and as input for Monte Carlo simulations but may become inadequate when mismatch with the substrate and molecular vibrations are considered. We study the simplest objects diffusing on a substrate at finite temperature TT, namely an adatom and a diatomic molecule (dimer), using the Langevin approach. In the driven case, we analyse the characteristic curves, comparing the motion for different values of the intramolecular spacing, both for T=0 and T0T\ne 0. The mobility of the dimer is higher than that of the monomer when the drift velocity is less than the natural stretching frequency. The role of intramolecular excitations is crucial in this respect. In the undriven case, the diffusive dynamics is considered as a function of temperature. Contrary to atomic diffusion, for the dimer it is not possible to define a single, temperature independent, activation barrier. Our results suggest that vibrations can account for drastic variations of the activation barrier. This reveals a complex behaviour determined by the interplay between vibrations and a temperature dependent intramolecular equilibrium length.Comment: 6 pages, 5 figures, Proceeding of the EMRS 2002 Conference, to be published in Thin Solid Film

    Exact results for the reactivity of a single-file system

    Get PDF
    We derive analytical expressions for the reactivity of a Single-File System with fast diffusion and adsorption and desorption at one end. If the conversion reaction is fast, then the reactivity depends only very weakly on the system size, and the conversion is about 100%. If the reaction is slow, then the reactivity becomes proportional to the system size, the loading, and the reaction rate constant. If the system size increases the reactivity goes to the geometric mean of the reaction rate constant and the rate of adsorption and desorption. For large systems the number of nonconverted particles decreases exponentially with distance from the adsorption/desorption end.Comment: 4 pages, 2 figure

    Selection of the scaling solution in a cluster coalescence model

    Full text link
    The scaling properties of the cluster size distribution of a system of diffusing clusters is studied in terms of a simple kinetic mean field model. It is shown that a one parameter family of mathematically valid scaling solutions exists. Despite this, the kinetics reaches a unique scaling solution independent of initial conditions. This selected scaling solution is marginally physical; i.e., it is the borderline solution between the unphysical and physical branches of the family of solutions.Comment: 4 pages, 5 figure

    Steady-State Properties of Single-File Systems with Conversion

    Get PDF
    We have used Monte-Carlo methods and analytical techniques to investigate the influence of the characteristic parameters, such as pipe length, diffusion, adsorption, desorption and reaction rate constants on the steady-state properties of Single-File Systems with a reaction. We looked at cases when all the sites are reactive and when only some of them are reactive. Comparisons between Mean-Field predictions and Monte-Carlo simulations for the occupancy profiles and reactivity are made. Substantial differences between Mean-Field and the simulations are found when rates of diffusion are high. Mean-Field results only include Single-File behavior by changing the diffusion rate constant, but it effectively allows passing of particles. Reactivity converges to a limit value if more reactive sites are added: sites in the middle of the system have little or no effect on the kinetics. Occupancy profiles show approximately exponential behavior from the ends to the middle of the system.Comment: 15 pages, 20 figure

    Island diffusion on metal fcc(100) surfaces

    Get PDF
    We present Monte Carlo simulations for the size and temperature dependence of the diffusion coefficient of adatom islands on the Cu(100) surface. We show that the scaling exponent for the size dependence is not a constant but a decreasing function of the island size and approaches unity for very large islands. This is due to a crossover from periphery dominated mass transport to a regime where vacancies diffuse inside the island. The effective scaling exponents are in good agreement with theory and experiments.Comment: 13 pages, 2 figures, to be published in Phys. Rev. Let

    Fast diffusion of a Lennard-Jones cluster on a crystalline surface

    Full text link
    We present a Molecular Dynamics study of large Lennard-Jones clusters evolving on a crystalline surface. The static and the dynamic properties of the cluster are described. We find that large clusters can diffuse rapidly, as experimentally observed. The role of the mismatch between the lattice parameters of the cluster and the substrate is emphasized to explain the diffusion of the cluster. This diffusion can be described as a Brownian motion induced by the vibrationnal coupling to the substrate, a mechanism that has not been previously considered for cluster diffusion.Comment: latex, 5 pages with figure

    Ultra High Energy Cosmology with POLARBEAR

    Full text link
    Observations of the temperature anisotropy of the Cosmic Microwave Background (CMB) lend support to an inflationary origin of the universe, yet no direct evidence verifying inflation exists. Many current experiments are focussing on the CMB's polarization anisotropy, specifically its curl component (called "B-mode" polarization), which remains undetected. The inflationary paradigm predicts the existence of a primordial gravitational wave background that imprints a unique B-mode signature on the CMB's polarization at large angular scales. The CMB B-mode signal also encodes gravitational lensing information at smaller angular scales, bearing the imprint of cosmological large scale structures (LSS) which in turn may elucidate the properties of cosmological neutrinos. The quest for detection of these signals; each of which is orders of magnitude smaller than the CMB temperature anisotropy signal, has motivated the development of background-limited detectors with precise control of systematic effects. The POLARBEAR experiment is designed to perform a deep search for the signature of gravitational waves from inflation and to characterize lensing of the CMB by LSS. POLARBEAR is a 3.5 meter ground-based telescope with 3.8 arcminute angular resolution at 150 GHz. At the heart of the POLARBEAR receiver is an array featuring 1274 antenna-coupled superconducting transition edge sensor (TES) bolometers cooled to 0.25 Kelvin. POLARBEAR is designed to reach a tensor-to-scalar ratio of 0.025 after two years of observation -- more than an order of magnitude improvement over the current best results, which would test physics at energies near the GUT scale. POLARBEAR had an engineering run in the Inyo Mountains of Eastern California in 2010 and will begin observations in the Atacama Desert in Chile in 2011.Comment: 8 pages, 6 figures, DPF 2011 conference proceeding

    The bolometric focal plane array of the Polarbear CMB experiment

    Full text link
    The Polarbear Cosmic Microwave Background (CMB) polarization experiment is currently observing from the Atacama Desert in Northern Chile. It will characterize the expected B-mode polarization due to gravitational lensing of the CMB, and search for the possible B-mode signature of inflationary gravitational waves. Its 250 mK focal plane detector array consists of 1,274 polarization-sensitive antenna-coupled bolometers, each with an associated lithographed band-defining filter. Each detector's planar antenna structure is coupled to the telescope's optical system through a contacting dielectric lenslet, an architecture unique in current CMB experiments. We present the initial characterization of this focal plane
    corecore