707 research outputs found

    Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells

    Get PDF
    Major effort during this reporting period was devoted to two tasks: improvement of the electrical measurement instrumentation through the design and construction of a microcomputer controlled short interval tester, and better understanding of second quadrant behavior by developing a mathematical model relating cell temperature to electrical characteristics. In addition, some preliminary work is reported on an investigation into color changes observed after stressing

    Distinguishing ecological from evolutionary approaches to transposable elements

    Get PDF
    Considerable variation exists not only in the kinds of transposable elements (TEs) occurring within the genomes of different species, but also in their abundance and distribution. Noting a similarity to the assortment of organisms among ecosystems, some researchers have called for an ecological approach to the study of transposon dynamics. However, there are several ways to adopt such an approach, and it is sometimes unclear what an ecological perspective will add to the existing co-evolutionary framework for explaining transposon-host interactions. This review aims to clarify the conceptual foundations of transposon ecology in order to evaluate its explanatory prospects. We begin by identifying three unanswered questions regarding the abundance and distribution of TEs that potentially call for an ecological explanation. We then offer an operational distinction between evolutionary and ecological approaches to these questions. By determining the amount of variance in transposon abundance and distribution that is explained by ecological and evolutionary factors, respectively, it is possible empirically to assess the prospects for each of these explanatory frameworks. To illustrate how this methodology applies to a concrete example, we analyzed whole-genome data for one set of distantly related mammals and another more closely related group of arthropods. Our expectation was that ecological factors are most informative for explaining differences among individual TE lineages, rather than TE families, and for explaining their distribution among closely related as opposed to distantly related host genomes. We found that, in these data sets, ecological factors do in fact explain most of the variation in TE abundance and distribution among TE lineages across less distantly related host organisms. Evolutionary factors were not significant at these levels. However, the explanatory roles of evolution and ecology become inverted at the level of TE families or among more distantly related genomes. Not only does this example demonstrate the utility of our distinction between ecological and evolutionary perspectives, it further suggests an appropriate explanatory domain for the burgeoning discipline of transposon ecology. The fact that ecological processes appear to be impacting TE lineages over relatively short time scales further raises the possibility that transposons might serve as useful model systems for testing more general hypotheses in ecology

    Quantitative analyses of interactions between SpoVG and RNA/DNA

    Get PDF
    The Borrelia burgdorferi SpoVG protein has previously been found to be a DNA- and RNA-binding protein. To aid in the elucidation of ligand motifs, affinities for numerous RNAs, ssDNAs, and dsDNAs were measured and compared. The loci used in the study were spoVG, glpFKD, erpAB, bb0242, flaB, and ospAB, with particular focus on the untranslated 5′ portion of the mRNAs. Performing binding and competition assays yielded that the 5′ end of spoVG mRNA had the highest affinity while the lowest observed affinity was to the 5’ end of flaB mRNA. Mutagenesis studies of spoVG RNA and ssDNA sequences suggested that the formation of SpoVG-nucleic acid complexes are not entirely dependent on either sequence or structure. Additionally, exchanging uracil for thymine in ssDNAs did not affect protein-nucleic acid complex formation

    Emotional expression during attention-deficit/hyperactivity disorders treatment: initial assessment of treatment effects.

    Get PDF
    OBJECTIVE: The purpose of this research was to provide an initial examination of the effects of atomoxetine and stimulants on emotional expression using a newly developed scale for assessing emotional expression in children with attention-deficit/hyperactivity disorder (ADHD). METHOD: The parent-rated Expression and Emotion Scale for Children (EESC) was collected during two studies. During a cross-sectional validation study, the EESC was completed to assess the child\u27s current treatment and retrospectively for previous medication. In a randomized, placebo-controlled trial of atomoxetine, the EESC was collected at baseline and endpoint. RESULTS: In the validation study, no statistically significant differences in EESC scores were found between groups taking atomoxetine (n = 74) and stimulants (n = 105). Patients who switched from a stimulant to atomoxetine (n = 40) had greater improvement in emotional expression than those switched to another stimulant (n = 21) (p = 0.008). In the clinical trial, no difference in rates of worsening of emotional expression were observed (atomoxetine 8.8%, placebo 12.3%; p = 0.440). CONCLUSION: No treatment differences in emotional expression were observed based on current medications. However, stimulant patients needing to switch medications may have greater improvements in emotional expression by switching to atomoxetine

    Bond-disordered spin systems: Theory and application to doped high-Tc compounds

    Full text link
    We examine the stability of magnetic order in a classical Heisenberg model with quenched random exchange couplings. This system represents the spin degrees of freedom in high-TcT_\textrm{c} compounds with immobile dopants. Starting from a replica representation of the nonlinear σ\sigma-model, we perform a renormalization-group analysis. The importance of cumulants of the disorder distribution to arbitrarily high orders necessitates a functional renormalization scheme. From the renormalization flow equations we determine the magnetic correlation length numerically as a function of the impurity concentration and of temperature. From our analysis follows that two-dimensional layers can be magnetically ordered for arbitrarily strong but sufficiently diluted defects. We further consider the dimensional crossover in a stack of weakly coupled layers. The resulting phase diagram is compared with experimental data for La2x_{2-x}Srx_xCuO4_4.Comment: 12 pages, 5 figure

    Boosted three-dimensional black-hole evolutions with singularity excision

    Get PDF
    Binary black hole interactions provide potentially the strongest source of gravitational radiation for detectors currently under development. We present some results from the Binary Black Hole Grand Challenge Alliance three- dimensional Cauchy evolution module. These constitute essential steps towards modeling such interactions and predicting gravitational radiation waveforms. We report on single black hole evolutions and the first successful demonstration of a black hole moving freely through a three-dimensional computational grid via a Cauchy evolution: a hole moving ~6M at 0.1c during a total evolution of duration ~60M

    The genome-wide multi-layered architecture of chromosome pairing in early Drosophila embryos

    Get PDF
    Genome organization involves cis and trans chromosomal interactions, both implicated in gene regulation, development, and disease. Here, we focus on trans interactions in Drosophila, where homologous chromosomes are paired in somatic cells from embryogenesis through adulthood. We first address long-standing questions regarding the structure of embryonic homolog pairing and, to this end, develop a haplotype-resolved Hi-C approach to minimize homolog misassignment and thus robustly distinguish trans-homolog from cis contacts. This computational approach, which we call Ohm, reveals pairing to be surprisingly structured genome-wide, with trans-homolog domains, compartments, and interaction peaks, many coinciding with analogous cis features. We also find a significant genome-wide correlation between pairing, transcription during zygotic genome activation, and binding of the pioneer factor Zelda. Our findings reveal a complex, highly structured organization underlying homolog pairing, first discovered a century ago in Drosophila. Finally, we demonstrate the versatility of our haplotype-resolved approach by applying it to mammalian embryos
    corecore