534 research outputs found

    A Light Calibration System for the ProtoDUNE-DP Detector

    Full text link
    A LED-based fiber calibration system for the ProtoDUNE-Dual Phase (DP) photon detection system (PDS) has been designed and validated. ProtoDUNE-DP is a 6x6x6 m3 liquid argon time-projection-chamber currently being installed at the Neutrino Platform at CERN. The PDS is based on 36 8-inch photomultiplier tubes (PMTs) and will allow triggering on cosmic rays. The system serves as prototype for the PDS of the final DUNE DP far detector in which the PDS also has the function to allow the 3D event reconstruction on non-beam physics. For this purpose an equalized PMT response is desirable to allow using the same threshold definition for all PMT groups, simplifying the determination of the trigger efficiency. The light calibration system described in this paper is developed to provide this and to monitor the PMT performance in-situ.Comment: 15 pages, 5 figure

    Ultracompact microinterferometer-based fiber Bragg grating interrogator on a silicon chip

    Get PDF
    We report an interferometer-based multiplexed fiber Bragg grating (FBG) interrogator using silicon photonic technology. The photonic-integrated system includes the grating coupler, active and passive interferometers, interferometers, a 12-channel wavelength-division-multiplexing (WDM) filter, and Ge photodiodes, all integrated on a 6x8 mm2 silicon chip. The system also includes optical and electric interfaces to a printed board, which is connected to a real-time electronic board that actively performs the phase demodulation processing using a multitone mixing (MTM) technique. The device with active demodulation, which uses thermally-based phase shifters, features a noise figure of σ  =  0.13 pm at a bandwidth of 700 Hz, which corresponds to a dynamic spectral resolution of 4.9 fm/Hz1/2. On the other hand, the passive version of the system, based on a 90Âș-hybrid coupler, features a noise figure of σ  =  2.55 pm at a bandwidth of 10 kHz, also showing successful detection of a 42 kHz signal when setting the bandwidth to 50 kHz. These results demonstrate the advantage of integrated photonics, which allows the integration of several systems with different demodulation schemes in the same chip and guarantees easy scalability to a higher number of ports without increasing the dimensions or the cost

    Comparison of flipped learning and traditional lecture method for teaching digestive system diseases in undergraduate medicine: A prospective non-randomized controlled trial

    Get PDF
    Introduction: This study examined the effects of a large-scale flipped learning (FL) approach in an undergraduate course of Digestive System Diseases. Methods: This prospective non-randomized trial recruited 404 students over three academic years. In 2016, the course was taught entirely in a Traditional Lecture (TL) style, in 2017 half of the course (Medical topics) was replaced by FL while the remaining half (Surgical topics) was taught by TL and in 2018, the whole course was taught entirely by FL. Academic performance, class attendance and student’s satisfaction surveys were compared between cohorts. Results: Test scores were higher in the FL module (Medical) than in the TL module (Surgical) in the 2017 cohort but were not different when both components were taught entirely by TL (2016) or by FL (2018). Also, FL increased the probability of reaching superior grades (scores >7.0) and improved class attendance and students’ satisfaction. Conclusion: The holistic FL model is more effective for teaching undergraduate clinical gastroenterology compared to traditional teaching methods and has a positive impact on classroom attendances

    Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. Acknowledgements We would like to thank Dr Robert Griffith/CEH for providing DNA from soil samples and Dr Anthony Travis for his help with BioLinux. Sequencing was performed in NERC platform in Liverpool. CG-R was funded by a NERC fellowship NE/J019151/1. CQ was funded by a MRC fellowship (MR/M50161X/1) as part of the cloud infrastructure for microbial genomics consortium (MR/L015080/1).Peer reviewedPublisher PD

    Performance study of a 3 x 1 x 1 m(3) dual phase liquid Argon Time Projection Chamber exposed to cosmic rays

    Get PDF
    This work would not have been possible without the support of the Swiss National Science Foundation, Switzerland; CEA and CNRS/IN2P3, France; KEK and the JSPS program, Japan; Ministerio de Ciencia e Innovacion in Spain under grants FPA2016-77347-C2, SEV-2016-0588 and MdM-2015-0509, Comunidad de Madrid, the CERCA program of the Generalitat de Catalunya and the fellowship (LCF/BQ/DI18/11660043) from "La Caixa" Foundation (ID 100010434); the Programme PNCDI III, CERN-RO, under Contract 2/2020, Romania; the U.S. Department of Energy under Grant No. DE-SC0011686. This project has received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement no. 654168. The authors are also grateful to the French government operated by the National Research Agency (ANR) for the LABEX Enigmass, LABEX Lyon Institute of Origins (ANR-10-LABX-0066) of the Universite de Lyon for its financial support within the program "Investissements d'Avenir" (ANR-11-IDEX-0007).We report the results of the analyses of the cosmic ray data collected with a 4 tonne (3x1x1 m(3)) active mass (volume) Liquid Argon Time-Projection Chamber (TPC) operated in a dual-phase mode. We present a detailed study of the TPC's response, its main detector parameters and performance. The results are important for the understanding and further developments of the dual-phase technology, thanks to the verification of key aspects, such as the extraction of electrons from liquid to gas and their amplification through the entire one square metre readout plain, gain stability, purity and charge sharing between readout views.Swiss National Science Foundation (SNSF)French Atomic Energy CommissionCentre National de la Recherche Scientifique (CNRS)High Energy Accelerator Research Organization (KEK)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceSpanish Government FPA2016-77347-C2 SEV-2016-0588MdM-2015-0509Comunidad de MadridCERCA program of the Generalitat de CatalunyaLa Caixa Foundation LCF/BQ/DI18/11660043 100010434Programme PNCDI III, RomaniaCERN-RO, Romania 2/2020United States Department of Energy (DOE) SC0011686European Commission 654168Universite de Lyon ANR-10-LABX-0066 ANR-11-IDEX-000

    Multifunctional light beam control device by stimuli-responsive liquid crystal micro-grating structures

    Get PDF
    There is an increasing need to control light phase with tailored precision via simple means in both fundamental science and industry. One of the best candidates to achieve this goal are electro-optical materials. In this work, a novel technique to modulate the spatial phase profile of a propagating light beam by means of liquid crystals (LC), electro-optically addressed by indium-tin oxide (ITO) grating microstructures, is proposed and experimentally demonstrated. A planar LC cell is assembled between two perpendicularly placed ITO gratings based on microstructured electrodes. By properly selecting only four voltage sources, we modulate the LC-induced phase profile such that non-diffractive Bessel beams, laser stretching, beam steering, and 2D tunable diffraction gratings are generated. In such a way, the proposed LC-tunable component performs as an all-in-one device with unprecedented characteristics and multiple functionalities. The operation voltages are very low and the aperture is large. Moreover, the device operates with a very simple voltage control scheme and it is lightweight and compact. Apart from the demonstrated functionalities, the proposed technique could open further venues of research in optical phase spatial modulation formats based on electro-optical materials.This work was supported by the Comunidad de Madrid and FEDER Program (S2018/NMT-4326), the Ministerio de EconomĂ­a y Competitividad of Spain (TEC2016-77242-C3-1-R and TEC2016-76021-C2-2-R), the FEDER/Ministerio de Ciencia, InnovaciĂłn y Universidades and Agencia Estatal de InvestigaciĂłn (RTC2017-6321-1, PID2019-109072RB-C31 and PID2019-107270RB-C21). The authors also acknowledge the support by the Ministry of National Defense of Poland (GBMON/13-995/2018/WAT), Military University of Technology (Grant no. 23-895)
    • 

    corecore