15,297 research outputs found

    Adequacy of the Dicke model in cavity QED: a counter-"no-go" statement

    Full text link
    The long-standing debate whether the phase transition in the Dicke model can be realized with dipoles in electromagnetic fields is yet an unsettled one. The well-known statement often referred to as the "no-go theorem", asserts that the so-called A-square term, just in the vicinity of the critical point, becomes relevant enough to prevent the system from undergoing a phase transition. At variance with this common belief, in this paper we prove that the Dicke model does give a consistent description of the interaction of light field with the internal excitation of atoms, but in the dipole gauge of quantum electrodynamics. The phase transition cannot be excluded by principle and a spontaneous transverse-electric mean field may appear. We point out that the single-mode approximation is crucial: the proper treatment has to be based on cavity QED, wherefore we present a systematic derivation of the dipole gauge inside a perfect Fabry-P\'erot cavity from first principles. Besides the impact on the debate around the Dicke phase transition, such a cleanup of the theoretical ground of cavity QED is important because currently there are many emerging experimental approaches to reach strong or even ultrastrong coupling between dipoles and photons, which demand a correct treatment of the Dicke model parameters

    Dissipative flow and vortex shedding in the Painlev\'e boundary layer of a Bose Einstein condensate

    Full text link
    Raman et al. have found experimental evidence for a critical velocity under which there is no dissipation when a detuned laser beam is moved in a Bose-Einstein condensate. We analyze the origin of this critical velocity in the low density region close to the boundary layer of the cloud. In the frame of the laser beam, we do a blow up on this low density region which can be described by a Painlev\'e equation and write the approximate equation satisfied by the wave function in this region. We find that there is always a drag around the laser beam. Though the beam passes through the surface of the cloud and the sound velocity is small in the Painlev\'e boundary layer, the shedding of vortices starts only when a threshold velocity is reached. This critical velocity is lower than the critical velocity computed for the corresponding 2D problem at the center of the cloud. At low velocity, there is a stationary solution without vortex and the drag is small. At the onset of vortex shedding, that is above the critical velocity, there is a drastic increase in drag.Comment: 4 pages, 4 figures (with 9 ps files

    Force-extension relation of cross-linked anisotropic polymer networks

    Get PDF
    Cross-linked polymer networks with orientational order constitute a wide class of soft materials and are relevant to biological systems (e.g., F-actin bundles). We analytically study the nonlinear force-extension relation of an array of parallel-aligned, strongly stretched semiflexible polymers with random cross-links. In the strong stretching limit, the effect of the cross-links is purely entropic, independent of the bending rigidity of the chains. Cross-links enhance the differential stretching stiffness of the bundle. For hard cross-links, the cross-link contribution to the force-extension relation scales inversely proportional to the force. Its dependence on the cross-link density, close to the gelation transition, is the same as that of the shear modulus. The qualitative behavior is captured by a toy model of two chains with a single cross-link in the middle.Comment: 7 pages, 4 figure

    The structure of trailing vortices generated by model rotor blades

    Get PDF
    Hot-wire anemometry to analyze the structure and geometry of rotary wing trailing vortices is studied. Tests cover a range of aspect ratios and blade twist. For all configurations, measured vortex strength correlates well with maximum blade-bound circulation. Measurements of wake geometry are in agreement with classical data for high-aspect ratios. The detailed vortex structure is similar to that found for fixed wings and consists of four well defined regions--a viscous core, a turbulent mixing region, a merging region, and an inviscid outer region. A single set of empirical formulas for the entire set of test data is described

    Ion Trap Mass Spectrometers for Identity, Abundance and Behavior of Volatiles on the Moon

    Get PDF
    NASA GSFC and The Open University (UK) are collaborating to deploy an Ion Trap Mass Spectrometer on the Moon to investigate the lunar water cycle. The ITMS is flight-proven throughthe Rosetta Philae comet lander mission. It is also being developed under ESA funding to analyse samples drilled from beneath the lunar surface on the Roscosmos Luna-27 lander (2025).Now, GSFC and OU will now develop a compact ITMS instrument to study the near-surface lunar exosphere on board a CLPS Astrobotic lander at Lacus Mortis in 2021

    Renormalized One-loop Theory of Correlations in Disordered Diblock Copolymers

    Full text link
    A renormalized one-loop theory (ROL) is used to calculate corrections to the random phase approximation (RPA) for the structure factor \Sc(q) in disordered diblock copolymer melts. Predictions are given for the peak intensity S(q⋆)S(q^{\star}), peak position q⋆q^{\star}, and single-chain statistics for symmetric and asymmetric copolymers as functions of χN\chi N, where χ\chi is the Flory-Huggins interaction parameter and NN is the degree of polymerization. The ROL and Fredrickson-Helfand (FH) theories are found to yield asymptotically equivalent results for the dependence of the peak intensity S(q⋆)S(q^{\star}) upon χN\chi N for symmetric diblock copolymers in the limit of strong scattering, or large χN\chi N, but yield qualitatively different predictions for symmetric copolymers far from the ODT and for asymmetric copolymers. The ROL theory predicts a suppression of S(q⋆)S(q^\star) and a decrease of q⋆q^{\star} for large values of χN\chi N, relative to the RPA predictions, but an enhancement of S(q⋆)S(q^{\star}) and an increase in q⋆q^{\star} for small χN\chi N (χN<5\chi N < 5). By separating intra- and inter-molecular contributions to S−1(q)S^{-1}(q), we show that the decrease in q⋆q^{\star} near the ODT is caused by the qq dependence of the intermolecular direct correlation function, and is unrelated to any change in single-chain statistics, but that the increase in q⋆q^{\star} at small values of χN\chi N is a result of non-Gaussian single-chain statistics.Comment: 16 pages, 13 figures, submitted to J. Chem. Phy

    Caddisflies (Trichoptera) of Wildcat Creek, Pickens County, South Carolina

    Get PDF
    Sixty-two species of caddisflies (Trichoptera) were identified from collections make from Wildcat Creek over a period of 33 years. A new distributional record for South Carolina was obtained for Diplectrona metaqui. Eight species, Polycentropus carlsoni, Wormaldia thyria, Neotrichia collata, Stactobiella delira, Neophylax atlanta, Goera fuscula, Pseudogoera singularis, and Agarodes griseus, are considered to be threatened in South Carolina

    Strong scaling of general-purpose molecular dynamics simulations on GPUs

    Get PDF
    We describe a highly optimized implementation of MPI domain decomposition in a GPU-enabled, general-purpose molecular dynamics code, HOOMD-blue (Anderson and Glotzer, arXiv:1308.5587). Our approach is inspired by a traditional CPU-based code, LAMMPS (Plimpton, J. Comp. Phys. 117, 1995), but is implemented within a code that was designed for execution on GPUs from the start (Anderson et al., J. Comp. Phys. 227, 2008). The software supports short-ranged pair force and bond force fields and achieves optimal GPU performance using an autotuning algorithm. We are able to demonstrate equivalent or superior scaling on up to 3,375 GPUs in Lennard-Jones and dissipative particle dynamics (DPD) simulations of up to 108 million particles. GPUDirect RDMA capabilities in recent GPU generations provide better performance in full double precision calculations. For a representative polymer physics application, HOOMD-blue 1.0 provides an effective GPU vs. CPU node speed-up of 12.5x.Comment: 30 pages, 14 figure
    • …
    corecore