3,024 research outputs found

    Optical Signatures of Quantum Emitters in Suspended Hexagonal Boron Nitride

    Full text link
    Hexagonal boron nitride (h-BN) is a tantalizing material for solid-state quantum engineering. Analogously to three-dimensional wide-bandgap semiconductors like diamond, h-BN hosts isolated defects exhibiting visible fluorescence, and the ability to position such quantum emitters within a two-dimensional material promises breakthrough advances in quantum sensing, photonics, and other quantum technologies. Critical to such applications, however, is an understanding of the physics underlying h-BN's quantum emission. We report the creation and characterization of visible single-photon sources in suspended, single-crystal, h-BN films. The emitters are bright and stable over timescales of several months in ambient conditions. With substrate interactions eliminated, we study the spectral, temporal, and spatial characteristics of the defects' optical emission, which offer several clues about their electronic and chemical structure. Analysis of the defects' spectra reveals similarities in vibronic coupling despite widely-varying fluorescence wavelengths, and a statistical analysis of their polarized emission patterns indicates a correlation between the optical dipole orientations of some defects and the primitive crystallographic axes of the single-crystal h-BN film. These measurements constrain possible defect models, and, moreover, suggest that several classes of emitters can exist simultaneously in free-standing h-BN, whether they be different defects, different charge states of the same defect, or the result of strong local perturbations

    Spin-Dependent Quantum Emission in Hexagonal Boron Nitride at Room Temperature

    Get PDF
    Optically addressable spins associated with defects in wide-bandgap semiconductors are versatile platforms for quantum information processing and nanoscale sensing, where spin-dependent inter-system crossing (ISC) transitions facilitate optical spin initialization and readout. Recently, the van der Waals material hexagonal boron nitride (h-BN) has emerged as a robust host for quantum emitters (QEs), but spin-related effects have yet to be observed. Here, we report room-temperature observations of strongly anisotropic photoluminescence (PL) patterns as a function of applied magnetic field for select QEs in h-BN. Field-dependent variations in the steady-state PL and photon emission statistics are consistent with an electronic model featuring a spin-dependent ISC between triplet and singlet manifolds, indicating that optically-addressable spin defects are present in h-BN - a versatile two-dimensional material promising efficient photon extraction, atom-scale engineering, and the realization of spin-based quantum technologies using van der Waals heterostructures.Comment: 38 pages, 34 figure

    Chandra Observations of Radio-Loud Quasars at z > 4: X-rays from the Radio Beacons of the Early Universe

    Full text link
    We present the results of Chandra observations of six radio-loud quasars (RLQs) and one optically bright radio-quiet quasar (RQQ) at z = 4.1-4.4. These observations cover a representative sample of RLQs with moderate radio-loudness (R ~ 40-400), filling the X-ray observational gap between optically selected RQQs and the five known blazars at z > 4 (R ~ 800-27000). We study the relationship between X-ray luminosity and radio-loudness for quasars at high redshift and constrain RLQ X-ray continuum emission and absorption. From a joint spectral fit of nine moderate-R RLQs observed by Chandra, we find tentative evidence for absorption above the Galactic N_H, with a best-fit neutral intrinsic column density of N_H = 2.4^{+2.0}_{-1.8} x 10^{22} cm^{-2}, consistent with earlier claims of increased absorption toward high-redshift RLQs. We also search for evidence of an enhanced jet-linked component in the X-ray emission due to the increased energy density of the cosmic microwave background (CMB) at high redshift, but we find neither spatial detections of X-ray jets nor a significant enhancement in the X-ray emission relative to comparable RLQs at low-to-moderate redshifts. Overall, the z ~ 4-5 RLQs have basic X-ray properties consistent with comparable RLQs in the local universe, suggesting that the accretion/jet mechanisms of these objects are similar as well.Comment: 12 pages, The Astronomical Journal, in pres

    Post-Inflationary Reheating

    Get PDF
    We study a model for reheating that has been much investigated for parametric resonance, having a quartic interaction of the scalar inflaton with another scalar field. Attention is particularly on the quantum excitations of the inflaton field and the metric perturbation with a smooth transition from quantum to classical stochastic states, followed through from a specific inflation model to a state including a relativistic fluid. The scalar fields enter non-perturbatively but the metric enters perturbatively, and the validity of this latter is assessed. In this model our work seems to point the large scale curvature parameter changing.Comment: 25 pages, 6 figures. Coding error(misprint) corrected:figures and some conclusions change

    A Review of Different Behavior Modification Strategies Designed to Reduce Sedentary Screen Behaviors in Children

    Get PDF
    Previous research suggests that reducing sedentary screen behaviors may be a strategy for preventing and treating obesity in children. This systematic review describes strategies used in interventions designed to either solely target sedentary screen behaviors or multiple health behaviors, including sedentary screen behaviors. Eighteen studies were included in this paper; eight targeting sedentary screen behaviors only, and ten targeting multiple health behaviors. All studies used behavior modification strategies for reducing sedentary screen behaviors in children (aged 1–12 years). Nine studies only used behavior modification strategies, and nine studies supplemented behavior modification strategies with an electronic device to enhance sedentary screen behaviors reductions. Many interventions (50%) significantly reduced sedentary screen behaviors; however the magnitude of the significant reductions varied greatly (−0.44 to −3.1 h/day) and may have been influenced by the primary focus of the intervention, number of behavior modification strategies used, and other tools used to limit sedentary screen behaviors
    corecore