277 research outputs found

    Comparison of accelerometer data calibration methods used in thermospheric neutral density estimation

    Get PDF
    Ultra-sensitive space-borne accelerometers on board of low Earth orbit (LEO) satellites are used to measure non-gravitational forces acting on the surface of these satellites. These forces consist of the Earth radiation pressure, the solar radiation pressure and the atmospheric drag, where the first two are caused by the radiation emitted from the Earth and the Sun, respectively, and the latter is related to the thermospheric density. On-board accelerometer measurements contain systematic errors, which need to be mitigated by applying a calibration before their use in gravity recovery or thermospheric neutral density estimations. Therefore, we improve, apply and compare three calibration procedures: (1) a multi-step numerical estimation approach, which is based on the numerical differentiation of the kinematic orbits of LEO satellites; (2) a calibration of accelerometer observations within the dynamic precise orbit determination procedure and (3) a comparison of observed to modeled forces acting on the surface of LEO satellites. Here, accelerometer measurements obtained by the Gravity Recovery And Climate Experiment (GRACE) are used. Time series of bias and scale factor derived from the three calibration procedures are found to be different in timescales of a few days to months. Results are more similar (statistically significant) when considering longer timescales, from which the results of approach (1) and (2) show better agreement to those of approach (3) during medium and high solar activity. Calibrated accelerometer observations are then applied to estimate thermospheric neutral densities. Differences between accelerometer-based density estimations and those from empirical neutral density models, e.g., NRLMSISE-00, are observed to be significant during quiet periods, on average 22 % of the simulated densities (during low solar activity), and up to 28 % during high solar activity. Therefore, daily corrections are estimated for neutral densities derived from NRLMSISE-00. Our results indicate that these corrections improve model-based density simulations in order to provide density estimates at locations outside the vicinity of the GRACE satellites, in particular during the period of high solar/magnetic activity, e.g., during the St. Patrick's Day storm on 17 March 2015

    Apollo Lightcraft Project

    Get PDF
    The ultimate goal for this NASA/USRA-sponsored Apollo Lightcraft Project is to develop a revolutionary manned launch vehicle technology which can potentially reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The Rensselaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. The research effort focuses on the concept of a 100 MW-class, laser-boosted Lightcraft Technology Demonstrator (LTD) drone. The preliminary conceptual design of this 1.4 meter diameter microspacecraft involved an analytical performance analysis of the transatmospheric engine in its two modes of operation (including an assessment of propellant and tankage requirements), and a detailed design of internal structure and external aeroshell configuration. The central theme of this advanced propulsion research was to pick a known excellent working fluid (i.e., air or LN sub 2), and then to design a combined-cycle engine concept around it. Also, a structural vibration analysis was performed on the annular shroud pulsejet engine. Finally, the sensor satellite mission was examined to identify the requisite subsystem hardware: e.g., electrical power supply, optics and sensors, communications and attitude control systems

    Experimental Observation of Energy Modulation in Electron Beams Passing Through Terahertz Dielectric Wakefield Structures

    Full text link
    We report observation of a strong wakefield induced energy modulation in an energy-chirped electron bunch passing through a dielectric-lined waveguide. This modulation can be effectively converted into a spatial modulation forming micro-bunches with a periodicity of 0.5 - 1 picosecond, hence capable of driving coherent THz radiation. The experimental results agree well with theoretical predictions.Comment: v3. Reviewers' suggestions incorporated. Accepted by PR

    Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure

    Full text link
    We have directly measured THz wakefields induced by a subpicosecond, intense relativistic electron bunch in a diamond loaded accelerating structure via the wakefield acceleration method. We present here the beam test results from the first diamond based structure. Diamond has been chosen for its high breakdown threshold and unique thermoconductive properties. Fields produced by a leading (drive) beam were used to accelerate a trailing (witness) electron bunch which followed the drive bunch at a variable distance. The energy gain of a witness bunch as a function of its separation from the drive bunch describes the time structure of the generated wakefield.Comment: v3, accepted by APL. Updated to reflect reviewers' comment

    Impurity effects on the melting of Ni clusters

    Full text link
    We demonstrate that the addition of a single carbon impurity leads to significant changes in the thermodynamic properties of Ni clusters consisting of more than a hundred atoms. The magnitude of the change induced is dependent upon the parameters of the Ni-C interaction. Hence, thermodynamic properties of Ni clusters can be effectively tuned by the addition of an impurity of a particular type. We also show that the presence of a carbon impurity considerably changes the mobility and diffusion of atoms in the Ni cluster at temperatures close to its melting point. The calculated diffusion coefficients of the carbon impurity in the Ni cluster can be used for a reliable estimate of the growth rate of carbon nanotubes.Comment: 27 pages, 13 figure

    An orbital-free molecular dynamics study of melting in K_20, K_55, K_92, K_142, Rb_55 and Cs_55 clusters

    Full text link
    The melting-like transition in potasium clusters K_N, with N=20, 55, 92 and 142, is studied by using an orbital-free density-functional constant-energy molecular dynamics simulation method, and compared to previous theoretical results on the melting-like transition in sodium clusters of the same sizes. Melting in potasium and sodium clusters proceeds in a similar way: a surface melting stage develops upon heating before the homogeneous melting temperature is reached. Premelting effects are nevertheless more important and more easily established in potasium clusters, and the transition regions spread over temperature intervals which are wider than in the case of sodium. For all the sizes considered, the percentage melting temperature reduction when passing from Na to K clusters is substantially larger than in the bulk. Once those two materials have been compared for a number of different cluster sizes, we study the melting-like transition in Rb_55 and Cs_55 clusters and make a comparison with the melting behavior of Na_55 and K_55. As the atomic number increases, the height of the specific heat peaks decreases, their width increases, and the melting temperature decreases as in bulk melting, but in a more pronounced way.Comment: LaTeX file. 6 pages with 17 pictures. Final version with minor change

    Multivariate Prediction of Total Water Storage Changes Over West Africa from Multi-Satellite Data

    Get PDF
    West African countries have been exposed to changes in rainfall patterns over the last decades, including a significant negative trend. This causes adverse effects on water resources of the region, for instance, reduced freshwater availability. Assessing and predicting large-scale total water storage (TWS) variations are necessary for West Africa, due to its environmental, social, and economical impacts. Hydrological models, however, may perform poorly over West Africa due to data scarcity. This study describes a new statistical, data-driven approach for predicting West African TWS changes from (past) gravity data obtained from the gravity recovery and climate experiment (GRACE), and (concurrent) rainfall data from the tropical rainfall measuring mission (TRMM) and sea surface temperature (SST) data over the Atlantic, Pacific, and Indian Oceans. The proposed method, therefore, capitalizes on the availability of remotely sensed observations for predicting monthly TWS, a quantity which is hard to observe in the field but important for measuring regional energy balance, as well as for agricultural, and water resource management.Major teleconnections within these data sets were identified using independent component analysis and linked via low-degree autoregressive models to build a predictive framework. After a learning phase of 72 months, our approach predicted TWS from rainfall and SST data alone that fitted to the observed GRACE-TWS better than that from a global hydrological model. Our results indicated a fit of 79 % and 67 % for the first-year prediction of the two dominant annual and inter-annual modes of TWS variations. This fit reduces to 62 % and 57 % for the second year of projection. The proposed approach, therefore, represents strong potential to predict the TWS over West Africa up to 2 years. It also has the potential to bridge the present GRACE data gaps of 1 month about each 162days as well as a—hopefully—limited gap between GRACE and the GRACE follow-on mission over West Africa. The method presented could also be used to generate a near real-time GRACE forecast over the regions that exhibit strong teleconnections

    Coalescence of nanoscale metal clusters: Molecular-dynamics study

    Full text link
    We study the coalescence of nanoscale metal clusters in an inert-gas atmosphere using constant-energy molecular dynamics. The coalescence proceeds via atomic diffusion with the release of surface energy raising the temperature. If the temperature exceeds the melting point of the coalesced cluster, a molten droplet forms. If the temperature falls between the melting point of the larger cluster and those of the smaller clusters, a metastable molten droplet forms and freezes.Comment: 5 figure
    corecore