73 research outputs found

    Unravelling the structural complexity of glycolipids with cryogenic infrared spectroscopy

    Get PDF
    Glycolipids are complex glycoconjugates composed of a glycan headgroup and a lipid moiety. Their modular biosynthesis creates a vast amount of diverse and often isomeric structures, which fulfill highly specific biological functions. To date, no gold-standard analytical technique can provide a comprehensive structural elucidation of complex glycolipids, and insufficient tools for isomer distinction can lead to wrong assignments. Herein we use cryogenic gas-phase infrared spectroscopy to systematically investigate different kinds of isomerism in immunologically relevant glycolipids. We show that all structural features, including isomeric glycan headgroups, anomeric configurations and different lipid moieties, can be unambiguously resolved by diagnostic spectroscopic fingerprints in a narrow spectral range. The results allow for the characterization of isomeric glycolipid mixtures and biological applications

    Identification of Kinases and Phosphatases That Regulate ATG4B Activity by siRNA and Small Molecule Screening in Cells

    Get PDF
    Autophagy protease ATG4B is a key regulator of the LC3/GABARAP conjugation system required for autophagosome formation, maturation and closure. Members of the ATG4 and the LC3/GABARAP family have been implicated in various diseases including cancer, and targeting the ATG4B protease has been suggested as a potential therapeutic anti-cancer strategy. Recently, it has been demonstrated that ATG4B is regulated by multiple post-translational modifications, including phosphorylation and de-phosphorylation. In order to identify regulators of ATG4B activity, we optimized a cell-based luciferase assay based on ATG4B-dependent release of Gaussia luciferase. We applied this assay in a proof-of-concept small molecule compound screen and identified activating compounds that increase cellular ATG4B activity. Next, we performed a high-throughput screen to identify kinases and phosphatases that regulate cellular ATG4B activity using siRNA mediated knockdown and cDNA overexpression. Of these, we provide preliminary evidence that the kinase AKT2 enhances ATG4B activity in cells. We provide all raw and processed data from the screens as a resource for further analysis. Overall, our findings provide novel insights into the regulation of ATG4B and highlight the importance of post-translational modifications of ATG4B

    Protomers of Benzocaine: Solvent and Permittivity Dependence

    Get PDF
    The immediate environment of a molecule can have a profound influence on its properties. Benzocaine, the ethyl ester of para-aminobenzoic acid, which finds an application as a local anesthetic (LA), is found to adopt in its protonated form at least two populations of distinct structures in the gas phase and their relative intensities strongly depend on the properties of the solvent used in the electrospray ionization (ESI) process. Here we combine IR-vibrational spectroscopy with ion mobility-mass spectrometry (IM-MS) to yield gas-phase IR spectra of simultaneously m/z and drift-time resolved species of benzocaine. The results allow for an unambiguous identification of two protomeric species - the N- and O-protonated form. Density functional theory (DFT) calculations link these structures to the most stable solution and gas-phase structures, respectively, with the electric properties of the surrounding medium being the main determinant for the preferred protonation site. The fact that the N-protonated form of benzocaine can be found in the gas phase is owed to kinetic trapping of the solution phase structure during transfer into the experimental setup. These observations confirm earlier studies on similar molecules where N- and O-protonation has been suggested

    Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases

    Get PDF
    Activation status of the phosphatidylinositol 3-kinase (PI3K) pathway in breast cancer brain metastases (BCBMs) is largely unknown. We examined expression of phospho(p)-AKT, p-S6, and phosphatase and tensin homologue (PTEN) in BCBMs and their implications for overall survival (OS) and survival after BCBMs. Secondary analyses included PI3K pathway activation status and associations with time to distant recurrence (TTDR) and time to BCBMs. Similar analyses were also conducted among the subset of patients with triple-negative BCBMs. METHODS: p-AKT, p-S6, and PTEN expression was assessed with immunohistochemistry in 52 BCBMs and 12 matched primary BCs. Subtypes were defined as hormone receptor (HR)+/HER2-, HER2+, and triple-negative (TNBC). Survival analyses were performed by using a Cox model, and survival curves were estimated with the Kaplan-Meier method. RESULTS: Expression of p-AKT and p-S6 and lack of PTEN (PTEN-) was observed in 75%, 69%, and 25% of BCBMs. Concordance between primary BCs and matched BCBMs was 67% for p-AKT, 58% for p-S6, and 83% for PTEN. PTEN- was more common in TNBC compared with HR+/HER2- and HER2+. Expression of p-AKT, p-S6, and PTEN- was not associated with OS or survival after BCBMs (all, P > 0.06). Interestingly, among all patients, PTEN- correlated with shorter time to distant and brain recurrence. Among patients with TNBC, PTEN- in BCBMs was associated with poorer overall survival. CONCLUSIONS: The PI3K pathway is active in most BCBMs regardless of subtype. Inhibition of this pathway represents a promising therapeutic strategy for patients with BCBMs, a group of patients with poor prognosis and limited systemic therapeutic options. Although expression of the PI3K pathway did not correlate with OS and survival after BCBM, PTEN- association with time to recurrence and OS (among patients with TNBC) is worthy of further study

    Inside and out: the activities of senescence in cancer.

    Get PDF
    The core aspect of the senescent phenotype is a stable state of cell cycle arrest. However, this is a disguise that conceals a highly active metabolic cell state with diverse functionality. Both the cell-autonomous and the non-cell-autonomous activities of senescent cells create spatiotemporally dynamic and context-dependent tissue reactions. For example, the senescence-associated secretory phenotype (SASP) provokes not only tumour-suppressive but also tumour-promoting responses. Senescence is now increasingly considered to be an integrated and widespread component that is potentially important for tumour development, tumour suppression and the response to therapy.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nrc377

    Ovarian cancer molecular pathology.

    Full text link
    Peer reviewe

    Second Harmonic Phonon Spectroscopy of α-Quartz

    No full text
    We demonstrate mid-infrared second harmonic generation spectroscopy as a novel type of phonon spectroscopy for α-quartz. The immense tunability of an infrared free-electron laser gives access to optical phonons in the range of 350-1400 cm-1
    corecore