17,314 research outputs found
Laboratory experiments on the generation of internal tidal beams over steep slopes
We designed a simple laboratory experiment to study internal tides
generation. We consider a steep continental shelf, for which the internal tide
is shown to be emitted from the critical point, which is clearly amphidromic.
We also discuss the dependence of the width of the emitted beam on the local
curvature of topography and on viscosity. Finally we derive the form of the
resulting internal tidal beam by drawing an analogy with an oscillating
cylinder in a static fluid
Van der Waals spin valves
We propose spin valves where a 2D non-magnetic conductor is intercalated
between two ferromagnetic insulating layers. In this setup, the relative
orientation of the magnetizations of the insulating layers can have a strong
impact on the in-plane conductivity of the 2D conductor. We first show this for
a graphene bilayer, described with a tight-binding model, placed between two
ferromagnetic insulators. In the anti-parallel configuration, a band gap opens
at the Dirac point, whereas in the parallel configuration, the graphene bilayer
remains conducting. We then compute the electronic structure of graphene
bilayer placed between two monolayers of the ferromagnetic insulator CrI,
using density functional theory. Consistent with the model, we find that a gap
opens at the Dirac point only in the antiparallel configuration.Comment: 5 pages, 4 figure
Anisotropic superconducting properties of aligned MgB2 crystallites
Samples of aligned MgB2 crystallites have been prepared, allowing for the
first time the direct identification of an upper critical field anisotropy
Hc2^{ab}/Hc2^{c}= xi_{ab}/xi_{c} ~ 1.73; with xi_{o,ab} ~ 70 A, xi_{o,c} ~ 40
A, and a mass anisotropy ratio m_{ab}/m_{c} ~ 0.3. A ferromagnetic background
signal was identified, possibly related to the raw materials purity.Comment: 4 pages, 4 figures; Revised version to appear in Phys. Rev. Let
Extreme vortex pinning in the non-centrosymmetric superconductor CePtSi
We report on the vortex dynamics of a single crystal of the
non-centrosymmetric heavy-fermion superconductor CePtSi. Decays of the
remnant magnetization display a clean logarithmic time dependence with rates
that follow the temperature dependence expected from the Kim-Anderson theory.
The creep rates are lower than observed in any other centrosymmetric
superconductor and are not caused by high critical currents. On the contrary,
the critical current in CePtSi is considerably lower than in other
superconductors with strong vortex pinning indicating that an alternative
impediment on the flux line motion might be at work in this superconductor.Comment: 4 pages, 5 figure
- …