1,124 research outputs found

    Thermostating by Deterministic Scattering: Heat and Shear Flow

    Full text link
    We apply a recently proposed novel thermostating mechanism to an interacting many-particle system where the bulk particles are moving according to Hamiltonian dynamics. At the boundaries the system is thermalized by deterministic and time-reversible scattering. We show how this scattering mechanism can be related to stochastic boundary conditions. We subsequently simulate nonequilibrium steady states associated to thermal conduction and shear flow for a hard disk fluid. The bulk behavior of the model is studied by comparing the transport coefficients obtained from computer simulations to theoretical results. Furthermore, thermodynamic entropy production and exponential phase-space contraction rates in the stationary nonequilibrium states are calculated showing that in general these quantities do not agree.Comment: 16 pages (revtex) with 9 figures (postscript

    Predicting the coherence resonance curve using a semi-analytical treatment

    Full text link
    Emergence of noise induced regularity or Coherence Resonance in nonlinear excitable systems is well known. We explain theoretically why the normalized variance (VNV_{N}) of inter spike time intervals, which is a measure of regularity in such systems, has a unimodal profile. Our semi-analytic treatment of the associated spiking process produces a general yet simple formula for VNV_{N}, which we show is in very good agreement with numerics in two test cases, namely the FitzHugh-Nagumo model and the Chemical Oscillator model.Comment: 5 pages, 5 figure

    Stochastic Resonance in Two Dimensional Landau Ginzburg Equation

    Full text link
    We study the mechanism of stochastic resonance in a two dimensional Landau Ginzburg equation perturbed by a white noise. We shortly review how to renormalize the equation in order to avoid ultraviolet divergences. Next we show that the renormalization amplifies the effect of the small periodic perturbation in the system. We finally argue that stochastic resonance can be used to highlight the effect of renormalization in spatially extended system with a bistable equilibria

    Quasi Markovian behavior in mixing maps

    Full text link
    We consider the time dependent probability distribution of a coarse grained observable Y whose evolution is governed by a discrete time map. If the map is mixing, the time dependent one-step transition probabilities converge in the long time limit to yield an ergodic stochastic matrix. The stationary distribution of this matrix is identical to the asymptotic distribution of Y under the exact dynamics. The nth time iterate of the baker map is explicitly computed and used to compare the time evolution of the occupation probabilities with those of the approximating Markov chain. The convergence is found to be at least exponentially fast for all rectangular partitions with Lebesgue measure. In particular, uniform rectangles form a Markov partition for which we find exact agreement.Comment: 16 pages, 1 figure, uses elsart.sty, to be published in Physica D Special Issue on Predictability: Quantifying Uncertainty in Models of Complex Phenomen

    Diversity-induced resonance

    Get PDF
    We present conclusive evidence showing that different sources of diversity, such as those represented by quenched disorder or noise, can induce a resonant collective behavior in an ensemble of coupled bistable or excitable systems. Our analytical and numerical results show that when such systems are subjected to an external subthreshold signal, their response is optimized for an intermediate value of the diversity. These findings show that intrinsic diversity might have a constructive role and suggest that natural systems might profit from their diversity in order to optimize the response to an external stimulus.Comment: 4 pages, 3 figure

    Gravitational Waves from Warped Spacetime

    Get PDF
    We argue that the RSI model can provide a strong signature in gravitational waves. This signal is a relic stochastic background generated during the cosmological phase transition from an AdS-Schwarschild phase to the RS1 geometry that should occur at a temperature in the TeV range. We estimate the amplitude of the signal in terms of the parameters of the potential stabilizing the radion and show that over much of the parameter region in which the phase transition completes, a signal should be detectable at the planned space interferometer, LISA.Comment: 18 pages, 15 figures; v2: discussion improved, in particular on the justification of the thick wall approximation. 6 figures added. 4 pi factor corrected in perturbativity bound. N-dependence displayed. Conclusions unchanged. JHEP versio

    Stochastic resonance in periodic potentials: realization in a dissipative optical lattice

    Full text link
    We have observed the phenomenon of stochastic resonance on the Brillouin propagation modes of a dissipative optical lattice. Such a mode has been excited by applying a moving potential modulation with phase velocity equal to the velocity of the mode. Its amplitude has been characterized by the center-of-mass (CM) velocity of the atomic cloud. At Brillouin resonance, we studied the CM-velocity as a function of the optical pumping rate at a given depth of the potential wells. We have observed a resonant dependence of the CM velocity on the optical pumping rate, corresponding to the noise strength. This corresponds to the experimental observation of stochastic resonance in a periodic potential in the low-damping regime

    Null energy condition and superluminal propagation

    Get PDF
    We study whether a violation of the null energy condition necessarily implies the presence of instabilities. We prove that this is the case in a large class of situations, including isotropic solids and fluids relevant for cosmology. On the other hand we present several counter-examples of consistent effective field theories possessing a stable background where the null energy condition is violated. Two necessary features of these counter-examples are the lack of isotropy of the background and the presence of superluminal modes. We argue that many of the properties of massive gravity can be understood by associating it to a solid at the edge of violating the null energy condition. We briefly analyze the difficulties of mimicking H˙>0\dot H>0 in scalar tensor theories of gravity.Comment: 46 pages, 6 figure

    Brans-Dicke DGP Brane Cosmology

    Full text link
    We consider a five dimensional DGP-brane scenario endowed with a non-minimally coupled scalar field within the context of Brans-Dicke theory. This theory predicts that the mass appearing in the gravitational potential is modified by the addition of the mass of the effective intrinsic curvature on the brane. We also derive the effective four dimensional field equations on a 3+1 dimensional brane where the fifth dimension is assumed to have an orbifold symmetry. Finally, we discuss the cosmological implications of this setup, predicting an accelerated expanding universe with a value of the Brans-Dicke parameter ω\omega consistent with values resulting from the solar system observations.Comment: 12 pages, 1 figure, to appear in JCA

    Coherence Resonance in Chaotic Systems

    Get PDF
    We show that it is possible for chaotic systems to display the main features of coherence resonance. In particular, we show that a Chua model, operating in a chaotic regime and in the presence of noise, can exhibit oscillations whose regularity is optimal for some intermediate value of the noise intensity. We find that the power spectrum of the signal develops a peak at finite frequency at intermediate values of the noise. These are all signatures of coherence resonance. We also experimentally study a Chua circuit and corroborate the above simulation results. Finally, we analyze a simple model composed of two separate limit cycles which still exhibits coherence resonance, and show that its behavior is qualitatively similar to that of the chaotic Chua systemComment: 4 pages (including 4 figures) LaTeX fil
    corecore