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We present conclusive evidence showing that different sources of diversity, such as those represented by
quenched disorder or noise, can induce a resonant collective behavior in an ensemble of coupled bistable
or excitable systems. Our analytical and numerical results show that when such systems are subjected to
an external subthreshold signal, their response is optimized for an intermediate value of the diversity.
These findings show that intrinsic diversity might have a constructive role and suggest that natural systems
might profit from their diversity in order to optimize the response to an external stimulus.
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Noise-induced, or stochastic, resonance emerged in the
early 1980s as a proposal to explain the periodicity ob-
served in the Earth ice ages [1,2]. The mechanism is such
that an external forcing acting upon a nonlinear system can
be conveniently amplified under the presence of the right
amount of noise. This innovative proposal led many re-
searchers to look for a similar constructive role of noise in
physical, chemical, biological, and many other kinds of
systems [3–6]. While initially the studies focused on sim-
ple, low-dimension, dynamical systems, more recent work
[7,8] has considered the constructive role of noise in ex-
tended systems composed of many coupled identical units.
The assumption of identical units, while being mathemati-
cally convenient, is not very realistic for many of the
applications, since it is clear that in some natural systems,
especially in biology, the units composing the ensemble
present a disparity in the values of some characteristic
parameters. Among other consequences, this natural diver-
sity makes each isolated system respond differently to an
external forcing; it is an open question to investigate the
effect that diversity has on the global response of the
collective system.

This problem has received some recent attention. For
instance, Hong [9] analyzes the locking behavior of an
ensemble of coupled oscillators with different internal
frequencies subject to a periodic external forcing. He finds
that the quenched disorder helps a small fraction of the
oscillators to lock to the external frequency. However, he
does not observe a collective behavior in which the whole
ensemble benefits from the diversity in the internal fre-
quencies. In this Letter, we give evidence that the right
amount of diversity, in the form of quenched noise, might
help an extended system to respond globally in a more
coherent way to an external stimulus.

As in the case of stochastic resonance, we believe that
the results reported here are very general. For the sake of
concreteness, however, we have considered two prototyp-
ical nonlinear systems: one bistable and another excitable.

In both cases, we show that there is a resonance effect in
the global response as a function of the diversity.

We consider first an ensemble of N globally coupled
bistable systems, whose dynamics is given by

 _x i � xi � x
3
i � ai �

C
N

XN

j�1

�xj � xi� � A sin��t�: (1)

Here xi�t�, i � 1; . . . ; N, is the position of the ith unit at
time t, and C is the coupling strength. The location and
relative stability of the fixed points of the dynamics of an
isolated unit i are modified by the parameter ai. We assume
the ai’s to take independent values distributed according to
a probability distribution function g�a� that satisfies hai �
0, haiaji � �ij�2.�will be referred to as the diversity. The
system is also subjected to an external periodic forcing, of
intensity A and frequency � � 2�=T. For simplicity, and
to emphasize the role of the diversity, we neglect standard
noise effects on those equations.

In order to quantify the response of the system to the
external forcing, we introduce the average position of the
units X�t� � 1

N

PN
i�1 xi�t�. In the globally coupled case

considered here, the coupling among units appears only
through this macroscopic quantity:

 _x i � CX� �1� C�xi � x
3
i � ai � A sin��t�: (2)

This can be put in a potential form _xi � ��@Vi=@xi� with a
suitable time-dependent potential Vi�xi; t; ai; X� whose ex-
plicit expression can be easily obtained. By averaging
Eq. (2) over the whole population, we obtain

 

_X � X�
1

N

X

i

x3
i � A sin��t�: (3)

Here and henceforth, averages with respect to the variables
ai are replaced with averages with respect to the distribu-
tion g�a�. Following Ref. [10], let us introduce �i, such that
xi � X� �i. We additionally introduce 1

N

P
i�

2
i � M.
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Notice that M�t� is a function of time as it depends on the
distribution of �i�t�; furthermore, M � 0. Under the as-
sumption of �i being distributed according to an even
distribution[11], we get, using Eq. (3),

 

_X � X�1� 3M� � X3 � A sin��t�: (4)

The unforced system is bistable with equilibrium points at
X� � �

�����������������
1� 3M
p

. For � � 0, M vanishes after an initial
transient to wash out the effect of the possibly different
initial conditions for the xi’s. A weak, subthreshold forcing
(namely, A & 0:3 for the range of frequencies used in this
work) will not suffice to have the global variable X jump
from one stable point to the other as it will simply make
small oscillations around one of the equilibrium points. As
the diversity increases, M increases with a twofold effect:
first, the stable points approach each other, and, second, the
height of the barrier separating them decreases. It might be
possible that the weak external forcing is now able to
overcome the reduced barrier and the global variable X
exhibits wide oscillations between the two fixed points
following the external forcing. If the diversity increases
even further, leading to M> 1=3, the barrier disappears,
the two fixed points merge at X0 � 0, and the global
variable makes small oscillations around this new fixed
point. We then predict a resonance effect for intermediate
values of the diversity for which the amplitude of the
oscillations of X will be maximum.

It should be clear now what the mechanism is leading to
the resonance. In the homogeneous case, when all systems
have ai � 0, the subthreshold forcing cannot overcome the
potential barrier for any of them. As the diversity increases,
there will be a number of units for which the value of ai is
such that the forcing is now suprathreshold for them and
the barrier can be overcome in one direction. These units
are able, through the coupling term, to pull the other units
and, hence, produce a collective, macroscopic movement
following the variation of the external forcing. For too
large diversity, however, some of the units to be pulled
offer too much resistance to follow the external force, and
this effect cannot be overcome by the favorable units.

Before we present the numerical results sustaining this
diversity-induced resonance, let us present a simplified
treatment that allows us to reproduce the aforementioned
effect. The main problem to solve numerically Eq. (4), to
determine the time evolution of the global variable X�t�, is
to find the variation in time of the second moment M�t�.
The classical treatment of Ref. [10] consists in writing
down a hierarchy of equations which is truncated under
some Gaussian approximations for the moments. We fol-
low here an alternative approach. Using an ensemble av-
erage, we can write M�t� �

R
dag�a��x�t; a� � X�t�	2,

where a is distributed according to the distribution g�a�
and x�t; a� is the position at time t of a particle whose
diversity parameter takes the value a. This integral is
performed numerically using a Gaussian quadrature

scheme, for which we need to compute the necessary
values of the function x�t; a�. This calculation is done in
a regime of ‘‘slow forcing,’’ where the period of the forcing
signal is large enough such that, given a value of X�t�,
x�t; a� can be considered as the rest point given by the
minimum of the local potential V�x; t; a; X� or the root of
dV=dx � 0. This cubic equation can have either one or
three real roots: in the latter case, we selected the root with
the lowest potential value [12]. Once M�t� has been com-
puted in this way, the right-hand side of Eq. (4) is fully
determined, and we can proceed with its numerical inte-
gration to find the time evolution of X�t�. We quantify the
resonance effect by the spectral amplification factor [13]
� � 4A�2jhei�tX�t�ij2, where h. . .i denotes a time average.

In Fig. 1, we plot the amplification factor � versus the
diversity �, for different values of the period T of the
external forcing for an amplitude A below the threshold
value. As predicted, there is an optimum value of the
diversity for maximum amplification, the main result of
this Letter. Notice that our approximate treatment agrees
rather well with the results coming from a direct numerical
integration of the original set of Eq. (1), when the signal is
slow.

We now analyze how the system responds to different
modulation periods of the external forcing while the am-
plitude is kept fixed. In the inset in Fig. 1, we plot the
amplification factor as a function of the period of the
external forcing for fixed diversity. It can be seen that for
large T the amplification factor reaches a constant value,
while � vanishes for small T. Both regimes are well
described by the theoretical approximation. For large T,
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FIG. 1. Spectral amplification factor � of the globally coupled
bistable model, Eq. (1). The values of the ai’s are drawn from a
Gaussian distribution of zero mean and variance �2. Some
system parameters are N � 103, C � 1, A � 0:20. In the main
plot, we observe that the amplification factor exhibits a maxi-
mum as a function of the diversity in the case of both a period
T � 50 (black circles) and T � 103 (open circles) of the external
forcing. The inset plots the spectral amplification factor as a
function of the period of the forcing (the diversity is fixed at � �
0:55). In both plots, symbols correspond to numerical simula-
tions, and the lines are the corresponding theoretical predictions
of a simplified theory (see the text for details).
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the agreement is due to the validity of our approximate
picture of the dynamics in that limit. For small T, the
individual units are not able to follow the fast external
forcing, and, consequently, _xi 
 0, which leads to the same
condition to determine xi as a function of ai and X as in the
large T limit. It is worth mentioning that the shape of the
curve in the inset in Fig. 1 differs from what appears in
stochastic resonance where a maximum at intermediate
values of T is observed [4]. This difference is due to the
absence in the diversity-induced resonance case of a
matching between two time scales which in stochastic
resonance are the Kramer’s time and the forcing period.

In Fig. 2(a), we study the effect of the amplitude of the
forcing on the system response. As in stochastic resonance
[4], a maximum in the response appears only for subthresh-
old forcing, and the height of this maximum increases with
decreasing amplitude. However, for suprathreshold forcing
(the case A � 0:7), the linear regime is recovered, and the
amplification factor steadily decreases with increasing di-
versity. Figure 2(b) shows that the spectral amplification
factor has a maximum for a well-defined value of the
amplitude of the external forcing.

We now turn our attention to excitable systems. As a
paradigmatic model of interest in many biological appli-
cations, we consider a globally coupled ensemble of excit-

able units described by the FitzHugh-Nagumo equations:
 

� _xi � xi �
1

3
x3
i � yi �

C
N

XN

j�1

�xj � xi�;

_yi � xi � ai � A sin��t�:
(5)

The coupling between units is taken into account through
the activator variable x with a coupling strength C. Each
unit has a parameter ai, representing the diversity, drawn
from a probability distribution g�a� of mean haii � a and
correlations h�ai � a��aj � a�i � �ij�2. When jaij< 1,
system i is in the oscillatory regime, while for jaij � 1 it
is in the excitable one. As in the double-well case, the
system is subjected to a periodic forcing of intensity A and
frequency �, and we do not consider explicit noise terms.
The combined effect of diversity and noise was considered
in Ref. [14] in the context of coherence resonance.
Specifically, the authors of this reference found that, in
the unforced case A � 0 and in the presence of noise, there
was a systematic increase of the coherence factor for
increasing inhomogeneity. We focus in this Letter on the
forced case A � 0, where we will show a resonance effect
with respect to the diversity.
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FIG. 2. (a) Spectral amplification factor � of the globally
coupled bistable model, Eq. (1) as a function of diversity for
different values of the amplitude A of the forcing.
(b) Dependence of � on the forcing amplitude for fixed values
of diversity. Both figures use a period T � 200 and other
parameters as in Fig. 1. Symbols represent the results coming
from a numerical simulation of the system’s equations, and lines
correspond to the analytical approximation (see text for details).
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FIG. 3. Spectral amplification factor � of the globally coupled
FitzHugh-Nagumo model, Eqs. (5), where the ai’s have been
drawn from a Gaussian distribution of mean a and variance �2.
Some system parameters are N � 103, � � 10�2, a � 1:12, C �
1, A � 0:05. (a) Plot of � as a function of the diversity � for
different periods of the external forcing. (b) Plot of � as a
function of the period T for different values of the diversity �.
In both cases, the symbols represent the results coming from a
numerical simulation of the system’s equations (the solid line is
a guide to the eye).
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The theoretical analysis follows the lines of the double-
well system. With the definitions X � 1

N

P
ixi, Y �

1
N

P
iyi,

and M � 1
N

P
i�xi � X�

2, we arrive at
 

� _X � X�1�M� �
X3

3
� Y;

_Y � X� a� A sin��t�:
(6)

We conclude that in this model an increase in the diversity,
hence an increase in M, induces a change in the shape of
the nullclines of the dynamics of the global variables. As in
the double-well system, in the homogeneous case ai � a
and jaj> 1, all units are in the excitable regime, and we
consider the case where the weak external forcing is not
enough to overcome their excitability threshold. As the
diversity increases, some units will have their excitability
threshold lowered (they could even become oscillatory),
and the forcing is now suprathreshold for them. Those units
pull the others, so producing the observed collective be-
havior. The actual description of the collective behavior is
somewhat more involved, since M exhibits a periodic
variation with time, and it has a maximum value when
the collective variables X and Y are near the fixed point. In
the limit of large M, the nullclines are modified such that
the limit cycle disappears altogether.

In Fig. 3(a), we plot the amplification factor � of the
global X variable as a function of the diversity � for
different values of the external time period T and a fixed
value of the amplitude A close to threshold, where we can
observe the resonance effect. This plot shows some differ-
ences with the double-well system studied before, namely,
the presence of several resonances at different values of the
diversity. We speculate that this behavior has its origin in
the existence of a well-defined refractory time in the dy-
namics of an isolated unit. Several resonance maxima can
also be observed when plotting the amplification factor as a
function of the period of the forcing for fixed diversity; see
Fig. 3(b). A similar effect has been also reported for a
single FitzHugh-Nagumo system in the presence of noise,
and it is known as frequency-dependent stochastic reso-
nance [15].

In conclusion, we have given evidence that diversity, in
the form of quenched noise, can enhance and lead to a
resonant effect for the response of an extended system to an
external periodic forcing. The evidence has been given for
two prototype systems, paradigmatic of bistable and excit-
able behavior, and, hence, we believe that the same reso-
nance will appear in other more complicated systems. The
mechanism of the phenomenon is particularly simple: At a
given time, a fraction of the units are able to respond to the
external forcing; those units, through the coupling terms,
are able to pull the others into the direction of the force. For
too large diversity, the favorable units cannot overcome the
effect of the adverse ones. This resonance mechanism is
very general, and it could appear in many fields.

A final remark is relevant here. Note that in Eq. (4) for
the global variable X the effect of the diversity appears
only through the variable M measuring the dispersion in
the behavior of the dynamics of the individual units xi.
Therefore, the existence of a resonance effect for the
optimal amplification of weak signals does not depend on
the source of the disorder. The same effect could also be
obtained in the presence of disorder induced by noise
(stochastic resonance), by a nonregular network of con-
nectivities, inhibitory couplings, etc.

The idea that different sources of diversity can produce a
resonant effect leads us to speculate that the amount of
diversity present in some biological systems has an impor-
tant function. Diversity could have been evolutionarily
tuned in order to enhance the detection of weak signals.
Whether natural systems have taken advantage or not from
this diversity-related effect is a question that, as in the
particular case of stochastic resonance, has not yet a clear
answer.
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