21,954 research outputs found
Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in resting-cell incubations were analyzed and found to include nitrite, formaldehyde, and formate. No ammonium was excreted into the medium, and no dead-end metabolites were observed. The gene responsible for the degradation of RDX in strain 11Y is a constitutively expressed cytochrome P450-like gene, xpLA, which is found in a gene cluster with an adrenodoxin reductase homologue, xplB. The cytochrome P450 also has a flavodoxin domain at the N terminus. This study is the first to present a gene which has been identified as being responsible for RDX biodegradation. The mechanism of action of XplA on RDX is thought to involve initial denitration followed by spontaneous ring cleavage and mineralization
Determination of solid mass fraction in partially frozen hydrocarbon fuels
Filtration procedures alone are insufficient to determine the amounts of crystalline solid in a partially frozen hydrocarbon distillate fraction. This is due to the nature of the solidification process by which a large amount of liquid becomes entrapped within an interconnected crystalline structure. A technique has been developed to supplement filtration methods with an independent determination of the amount of liquid in the precipitate thereby revealing the actual value of mass percent crystalline solid, %S. A non-crystallizing dye is injected into the fuel and used as a tracer during the filtration. The relative concentrations of the dye in the filtrate and precipitate fractions is subsequently detected by a spectrophotometric comparison. The filtration apparatus was assembled so that the temperature of the sample is recorded immediately above the filter. Also, a second method of calculation has been established which allows significant reduction in test time while retaining acceptable accuracy of results. Data have been obtained for eight different kerosene range hydrocarbon fuels
Forces on Bins - The Effect of Random Friction
In this note we re-examine the classic Janssen theory for stresses in bins,
including a randomness in the friction coefficient. The Janssen analysis relies
on assumptions not met in practice; for this reason, we numerically solve the
PDEs expressing balance of momentum in a bin, again including randomness in
friction.Comment: 11 pages, LaTeX, with 9 figures encoded, gzippe
Are critical finite-size scaling functions calculable from knowledge of an appropriate critical exponent?
Critical finite-size scaling functions for the order parameter distribution
of the two and three dimensional Ising model are investigated. Within a
recently introduced classification theory of phase transitions, the universal
part of the critical finite-size scaling functions has been derived by
employing a scaling limit that differs from the traditional finite-size scaling
limit. In this paper the analytical predictions are compared with Monte Carlo
simulations. We find good agreement between the analytical expression and the
simulation results. The agreement is consistent with the possibility that the
functional form of the critical finite-size scaling function for the order
parameter distribution is determined uniquely by only a few universal
parameters, most notably the equation of state exponent.Comment: 11 pages postscript, plus 2 separate postscript figures, all as
uuencoded gzipped tar file. To appear in J. Phys. A
Correlation function and generalized master equation of arbitrary age
We study a two-state statistical process with a non-Poisson distribution of
sojourn times. In accordance with earlier work, we find that this process is
characterized by aging and we study three different ways to define the
correlation function of arbitrary age of the corresponding dichotomous
fluctuation based respectively on the Generalized Master Equation formalism, on
a Liouville-like approach and on a trajectory perspective.Comment: 11 pages, 1figur
K-Band Galaxy Counts in the South Galactic Pole Region
We present new K-band galaxy number counts from K=13 to 20.5 obtained from
-band surveys in the south galactic pole region, which cover 180.8
arcmin to a limiting magnitude of K=19, and 2.21 arcmin to K=21.
These are currently the most precise K-band galaxy counts at
because the area of coverage is largest among the existing surveys for this
magnitude range.
The completeness and photometry corrections are estimated from the recovery
of simulated galaxy and stellar profiles added to the obtained field image.
Many simulations were carried out to construct a probability matrix which
corrects the galaxy counts at the faint-end magnitudes of the surveys so the
corrected counts can be compared with other observations.
The K-band star counts in the south galactic pole region to are
also presented for use to constrain the vertical structure of the Galaxy.Comment: accepted for publication in ApJ. 26 pages with 4 figures, and 2
plates are not included. All documents and figures can be retrieved from
http://merope.mtk.nao.ac.jp/~minezaki/mine_paper.htm
Minimally invasive insertion of reference electrodes into commercial lithium-ion pouch cells
The authors gratefully acknowledge the financial support of EPSRC UK and Jaguar Land Rover Ltd for this work.Two procedures to introduce a lithium metal reference electrode into commercially manufactured lithium-ion pouch cells (Kokam SLPB 533459H4) are described and compared. By introducing a stable reference potential, the individual behavior of the positive and negative electrodes can be studied in operando under normal cycling. Unmodified cells and half-cells made from harvested electrode material were cycled under identical conditions to the modified cells to compare capacity degradation during cycling and thus validate each modification procedure for degradation testing. A configuration that did not affect the performance of the cell over 20 cycles was successfully developed.Publisher PDFPeer reviewe
A parametric open circuit voltage model for lithium ion batteries
The financial support of EPSRC UK and Jaguar Land Rover Ltd is gratefully acknowledged.We present an open circuit voltage (OCV) model for lithium ion (Li-ion) cells, which can be parameterized by measurements of the OCV of positive and negative electrode half-cells and a full cell. No prior knowledge of physical parameters related to particular cell chemistries is required. The OCV of the full cell is calculated from two electrode sub-models, which are comprised of additive terms that represent the phase transitions of the active electrode materials. The model structure is flexible and can be applied to any Li-ion cell chemistry. The model can account for temperature dependence and voltage hysteresis of the OCV. Fitting the model to OCV data recorded from a Li-ion cell at 0°C, 10°C, 20°C, 30°C and 40°C yielded high accuracies with errors (RMS) of less than 5 mV. The model can be used to maintain the accuracy of dynamic Li-ion cell models in battery management systems by accounting for the effects of capacity fade on the OCV. Moreover, the model provides a means to separate the cell's OCV into its constituent electrode potentials, which allows the electrodes’ capacities to be tracked separately over time, providing an insight into prevalent degradation mechanisms acting on the individual electrodes.Publisher PDFPeer reviewe
Ewald Sums for One Dimension
We derive analytic solutions for the potential and field in a one-dimensional
system of masses or charges with periodic boundary conditions, in other words
Ewald sums for one dimension. We also provide a set of tools for exploring the
system evolution and show that it's possible to construct an efficient
algorithm for carrying out simulations. In the cosmological setting we show
that two approaches for satisfying periodic boundary conditions, one overly
specified and the other completely general, provide a nearly identical
clustering evolution until the number of clusters becomes small, at which time
the influence of any size-dependent boundary cannot be ignored. Finally we
compare the results with other recent work with the hope of providing
clarification over differences these issues have induced. We explain that
modern formulations of physics require a well defined potential which is not
available if the forces are screened directly.Comment: 2 figures added references expanded discussion of algorithm corrected
figures added discussion of screened forc
- …
