62 research outputs found
Effect of Formation Hydrodynamics on Mechanical Properties of Container Materials
The objectives of this study were to compare the mechanical and physical properties of the sheets made using the Vortigen technology (a non-conventional technique that creates very high number vortices in a fluid flow mixture of water, fibers, and chemical additives) with those produced from a conventional method of papermaking and to provide insight into the impact of formation hydrodynamics on sheet properties. The results of formation, ultrasonic stiffness, and creep/accelerated creep measurements of the Vortigen sheets as compared with the standard sheets are presented. Samples of Vortigen (V) and standard (S) sheets (4 samples from each group) were obtained from papers produced on a pilot machine. Formation measurements (that provides a measure of density distribution in a sheet) were performed using a formation tester which is based on beta particle absorption. Measurements of creep and accelerated creep were made at a constant relative humidity (RH) of 80% and a cyclic RH between 30% and 80% for strips cut along the machine direction (MD) and cross machine direction (CD, which is perpendicular to MD) directions.
There was a significant difference between the distributions of basis weights for the two types of papers. The mean coefficient of variation in grammage for the V samples was 8.97 while that for the S samples was 12.60. The mean MD/CD stiffness ratios for the V and S samples were 1.1 and 1.6, respectively. The mean Z-direction longitudinal specific stiffness corresponding to the V samples were 18% greater than the corresponding value for the S samples. The MD strips from the S samples exhibited the smallest creep while the CD strips from the S samples exhibited the largest creep. Creep values corresponding to the Vortigen sheets were between the extreme values of the standard samples. The results of this study indicated that because of the influence of formation hydrodynamics on fiber orientation and formation, in general, the stiffness properties (and specifically the CD stiffness) of the Vortigen samples were greater than those of the standard samples
Coaxial Jets with Disparate Viscosity: Mixing and Laminarization Characteristics
Mixing of fluids in a coaxial jet is studied under four distinct viscosity ratios, m = 1, 10, 20 and 40, using highly resolved large-eddy simulations (LES), particle image velocimetry and planar laser-induced fluorescence. The accuracy of predictions is tested against data obtained by the simultaneous experimental measurements of velocity and concentration fields. For the highest and lowest viscosity ratios, standard RANS models with unclosed terms pertaining to viscosity variations are employed. We show that the standard Reynolds-averaged Navier-Stokes (RANS) approach with no explicit modelling for variable-viscosity terms is not applicable whereas dynamic LES models provide high-quality agreement with the measurements. To identify the underlying mixing physics and sources of discrepancy in RANS predictions, two distinct mixing modes are defined based on the viscosity ratio. Then, for each mode, the evolution of mixing structures, momentum budget analysis with emphasis on variable-viscosity terms, analysis of the turbulent activity and decay of turbulence are investigated using highly resolved LES data. The mixing dynamics is found to be quite distinct in each mixing mode. Variable viscosity manifests multiple effects that are working against each other. Viscosity gradients induce additional instabilities while increasing overall viscosity decreases the effective Reynolds number leading to laminarization of the turbulent jet, explaining the lack of dispersion and turbulent diffusion. Momentum budget analysis reveals that variable-viscosity terms are significant to be neglected. The scaling of the energy spectrum cascade suggests that in the TLL mode the unsteady laminar shedding is responsible for the eddies observed
Lattice Boltzmann for Binary Fluids with Suspended Colloids
A new description of the binary fluid problem via the lattice Boltzmann
method is presented which highlights the use of the moments in constructing two
equilibrium distribution functions. This offers a number of benefits, including
better isotropy, and a more natural route to the inclusion of multiple
relaxation times for the binary fluid problem. In addition, the implementation
of solid colloidal particles suspended in the binary mixture is addressed,
which extends the solid-fluid boundary conditions for mass and momentum to
include a single conserved compositional order parameter. A number of simple
benchmark problems involving a single particle at or near a fluid-fluid
interface are undertaken and show good agreement with available theoretical or
numerical results.Comment: 10 pages, 4 figures, ICMMES 200
Lattice-Boltzmann Method for Geophysical Plastic Flows
We explore possible applications of the Lattice-Boltzmann Method for the
simulation of geophysical flows. This fluid solver, while successful in other
fields, is still rarely used for geotechnical applications. We show how the
standard method can be modified to represent free-surface realization of
mudflows, debris flows, and in general any plastic flow, through the
implementation of a Bingham constitutive model. The chapter is completed by an
example of a full-scale simulation of a plastic fluid flowing down an inclined
channel and depositing on a flat surface. An application is given, where the
fluid interacts with a vertical obstacle in the channel.Comment: in W. Wu, R.I. Borja (Edts.) Recent advances in modelling landslides
and debris flow, Springer Series in Geomechanics and Geoengineering (2014),
ISBN 978-3-319-11052-3, pp. 131-14
Lattice Boltzmann simulations of soft matter systems
This article concerns numerical simulations of the dynamics of particles
immersed in a continuum solvent. As prototypical systems, we consider colloidal
dispersions of spherical particles and solutions of uncharged polymers. After a
brief explanation of the concept of hydrodynamic interactions, we give a
general overview over the various simulation methods that have been developed
to cope with the resulting computational problems. We then focus on the
approach we have developed, which couples a system of particles to a lattice
Boltzmann model representing the solvent degrees of freedom. The standard D3Q19
lattice Boltzmann model is derived and explained in depth, followed by a
detailed discussion of complementary methods for the coupling of solvent and
solute. Colloidal dispersions are best described in terms of extended particles
with appropriate boundary conditions at the surfaces, while particles with
internal degrees of freedom are easier to simulate as an arrangement of mass
points with frictional coupling to the solvent. In both cases, particular care
has been taken to simulate thermal fluctuations in a consistent way. The
usefulness of this methodology is illustrated by studies from our own research,
where the dynamics of colloidal and polymeric systems has been investigated in
both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures,
76 page
Numerical simulations of complex fluid-fluid interface dynamics
Interfaces between two fluids are ubiquitous and of special importance for
industrial applications, e.g., stabilisation of emulsions. The dynamics of
fluid-fluid interfaces is difficult to study because these interfaces are
usually deformable and their shapes are not known a priori. Since experiments
do not provide access to all observables of interest, computer simulations pose
attractive alternatives to gain insight into the physics of interfaces. In the
present article, we restrict ourselves to systems with dimensions comparable to
the lateral interface extensions. We provide a critical discussion of three
numerical schemes coupled to the lattice Boltzmann method as a solver for the
hydrodynamics of the problem: (a) the immersed boundary method for the
simulation of vesicles and capsules, the Shan-Chen pseudopotential approach for
multi-component fluids in combination with (b) an additional
advection-diffusion component for surfactant modelling and (c) a molecular
dynamics algorithm for the simulation of nanoparticles acting as emulsifiers.Comment: 24 pages, 12 figure
Effect of tube diameter and capillary number on platelet margination and near-wall dynamics
The effect of tube diameter and capillary number on platelet
margination in blood flow at tube haematocrit is investigated.
The system is modelled as three-dimensional suspension of deformable red blood
cells and nearly rigid platelets using a combination of the lattice-Boltzmann,
immersed boundary and finite element methods. Results show that margination is
facilitated by a non-diffusive radial platelet transport. This effect is
important near the edge of the cell-free layer, but it is only observed for , when red blood cells are tank-treading rather than tumbling. It is also
shown that platelet trapping in the cell-free layer is reversible for . Only for the smallest investigated tube ()
margination is essentially independent of . Once platelets have reached the
cell-free layer, they tend to slide rather than tumble. The tumbling rate is
essentially independent of but increases with . Tumbling is suppressed
by the strong confinement due to the relatively small cell-free layer thickness
at tube haematocrit.Comment: 16 pages, 10 figure
The USDA Barley Core Collection:Genetic Diversity, Population Structure, and Potential for Genome-Wide Association Studies
New sources of genetic diversity must be incorporated into plant breeding programs if they are to continue increasing grain yield and quality, and tolerance to abiotic and biotic stresses. Germplasm collections provide a source of genetic and phenotypic diversity, but characterization of these resources is required to increase their utility for breeding programs. We used a barley SNP iSelect platform with 7,842 SNPs to genotype 2,417 barley accessions sampled from the USDA National Small Grains Collection of 33,176 accessions. Most of the accessions in this core collection are categorized as landraces or cultivars/breeding lines and were obtained from more than 100 countries. Both STRUCTURE and principal component analysis identified five major subpopulations within the core collection, mainly differentiated by geographical origin and spike row number (an inflorescence architecture trait). Different patterns of linkage disequilibrium (LD) were found across the barley genome and many regions of high LD contained traits involved in domestication and breeding selection. The genotype data were used to define 'mini-core' sets of accessions capturing the majority of the allelic diversity present in the core collection. These 'mini-core' sets can be used for evaluating traits that are difficult or expensive to score. Genome-wide association studies (GWAS) of 'hull cover', 'spike row number', and 'heading date' demonstrate the utility of the core collection for locating genetic factors determining important phenotypes. The GWAS results were referenced to a new barley consensus map containing 5,665 SNPs. Our results demonstrate that GWAS and high-density SNP genotyping are effective tools for plant breeders interested in accessing genetic diversity in large germplasm collections
- …