924 research outputs found

    Size Effects in Carbon Nanotubes

    Full text link
    The inter-shell spacing of multi-walled carbon nanotubes was determined by analyzing the high resolution transmission electron microscopy images of these nanotubes. For the nanotubes that were studied, the inter-shell spacing d^002{\hat{d}_{002}} is found to range from 0.34 to 0.39 nm, increasing with decreasing tube diameter. A model based on the results from real space image analysis is used to explain the variation in inter-shell spacings obtained from reciprocal space periodicity analysis. The increase in inter-shell spacing with decreased nanotube diameter is attributed to the high curvature, resulting in an increased repulsive force, associated with the decreased diameter of the nanotube shells.Comment: 4 pages. RevTeX. 4 figure

    Thermonuclear Reaction Rate of 23Mg(p,gamma)24$Al

    Full text link
    Updated stellar rates for the reaction 23Mg(p,gamma)24Al are calculated by using all available experimental information on 24Al excitation energies. Proton and gamma-ray partial widths for astrophysically important resonances are derived from shell model calculations. Correspondences of experimentally observed 24Al levels with shell model states are based on application of the isobaric multiplet mass equation. Our new rates suggest that the 23Mg(p,gamma)24Al reaction influences the nucleosynthesis in the mass A>20 region during thermonuclear runaways on massive white dwarfs.Comment: 13 pages (uses Revtex) including 3 postscript figures (uses epsfig.sty), accepted for publication in Phys. Rev.

    Path-integral analysis of fluctuation theorems for general Langevin processes

    Full text link
    We examine classical, transient fluctuation theorems within the unifying framework of Langevin dynamics. We explicitly distinguish between the effects of non-conservative forces that violate detailed balance, and non-autonomous dynamics arising from the variation of an external parameter. When both these sources of nonequilibrium behavior are present, there naturally arise two distinct fluctuation theorems.Comment: 24 pages, one figur

    The three-dimensional Ising model: A paradigm of liquid-vapor coexistence in nuclear multifragmentation

    Get PDF
    Clusters in the three-dimensional Ising model rigorously obey reducibility and thermal scaling up to the critical temperature. The barriers extracted from Arrhenius plots depend on the cluster size as B∝AσB \propto A^{\sigma} where σ\sigma is a critical exponent relating the cluster size to the cluster surface. All the Arrhenius plots collapse into a single Fisher-like scaling function indicating liquid-vapor-like phase coexistence and the univariant equilibrium between percolating clusters and finite clusters. The compelling similarity with nuclear multifragmentation is discussed.Comment: (4 pages, 4 figures

    Quasi one dimensional 4^4He inside carbon nanotubes

    Get PDF
    We report results of diffusion Monte Carlo calculations for both 4^4He absorbed in a narrow single walled carbon nanotube (R = 3.42 \AA) and strictly one dimensional 4^4He. Inside the tube, the binding energy of liquid 4^4He is approximately three times larger than on planar graphite. At low linear densities, 4^4He in a nanotube is an experimental realization of a one-dimensional quantum fluid. However, when the density increases the structural and energetic properties of both systems differ. At high density, a quasi-continuous liquid-solid phase transition is observed in both cases.Comment: 11 pages, 3ps figures, to appear in Phys. Rev. B (RC

    Two-body Pion Absorption on 3He^3He at Threshold

    Full text link
    It is shown that a satisfactory explanation of the ratio of the rates of the reactions 3He(π−,nn)^3He(\pi^-,nn) and 3He(π−,np)^3He(\pi^-,np) for stopped pions is obtained once the effect of the short range two-nucleon components of the axial charge operator for the nuclear system is taken into account. By employing realistic models for the nucleon-nucleon interaction in the construction of these components of the axial charge operator, the predicted ratios agree with the empirical value to within 10-20\%.Comment: 19, UHPHYDOR-94-

    Nonlinear Dynamics of the Perceived Pitch of Complex Sounds

    Get PDF
    We apply results from nonlinear dynamics to an old problem in acoustical physics: the mechanism of the perception of the pitch of sounds, especially the sounds known as complex tones that are important for music and speech intelligibility

    Aerosol radiative, physical, and chemical properties in Beijing during June 1999

    Get PDF
    Beijing experiences air pollution such that the sky overhead is gray much of the time even on cloudless days. In order to understand the cause of this problem, the aerosol light scattering coefficient σ_(sp) and absorption coefficient σ_(ap) were measured under dry conditions (instrumental relative humidity 1.0 ÎŒm), the submicron aerosol was responsible for ∌80% of the light scattering at 530 nm. The largest contribution to the PM2.5 aerosol mass was due to organic compounds, which accounted for ∌30% of the mass. The contributions of sulfate, ammonium, and nitrate to the PM2.5 mass concentration were ∌15%, 5%, and 8%, respectively. Mineral aerosol contributed ∌16% to the PM2.5 aerosol mass. These data show that combustion-related particles rather than wind-blown dust dominated the light extinction budget during June 1999

    Electron correlation in C_(4N+2) carbon rings: aromatic vs. dimerized structures

    Full text link
    The electronic structure of C_(4N+2) carbon rings exhibits competing many-body effects of Huckel aromaticity, second-order Jahn-Teller and Peierls instability at large sizes. This leads to possible ground state structures with aromatic, bond angle or bond length alternated geometry. Highly accurate quantum Monte Carlo results indicate the existence of a crossover between C_10 and C_14 from bond angle to bond length alternation. The aromatic isomer is always a transition state. The driving mechanism is the second-order Jahn-Teller effect which keeps the gap open at all sizes.Comment: Submitted for publication: 4 pages, 3 figures. Corrected figure

    An investigation of standard thermodynamic quantities as determined via models of nuclear multifragmentation

    Get PDF
    Both simple and sophisticated models are frequently used in an attempt to understand how real nuclei breakup when subjected to large excitation energies, a process known as nuclear multifragmentation. Many of these models assume equilibriumthermodynamics and produce results often interpreted as evidence of a phase transition. This work examines one class of models and employs standard thermodynamical procedure to explore the possible existence and nature of a phase transition. The role of various terms, e.g. Coulomb and surface energy, is discussed.Comment: 19 two-column format pages with 24 figure
    • 

    corecore