4,171 research outputs found
Macro aerodynamic devices controlled by micro systems
Micro-ElectroMechanical-Systems (MEMS) have emerged as a major enabling technology across the engineering disciplines. In this study, the possibility of applying MEMS to the aerodynamic field was explored. We have demonstrated that microtransducers can be used to control the motion of a delta wing in a wind tunnel and can even maneuver a scaled aircraft in flight tests. The main advantage of using micro actuators to replace the traditional control surface is the significant reduction of radar cross-sections. At a high angle of attack, a large portion of the suction loading on a delta wing is contributed by the leading edge separation vortices which originate from thin boundary layers at the leading edge. We used microactuators with a thickness comparable to that of the boundary layer in order to alter the separation process and thus achieved control of the global motion by minute perturbations
Superior Antitumor Activity of a Novel Bispecific Antibody Cotargeting Human Epidermal Growth Factor Receptor 2 and Type I Insulin-like Growth Factor Receptor
The humanized anti-HER2 monoclonal antibody (mAb) trastuzumab (Herceptin; Genentech) effectively inhibits human epidermal growth factor receptor 2 (HER2)-positive breast tumors. However, many patients responding to treatment often develop resistance. Cross-talk between type I insulin-like growth factor receptor (IGF-IR) and HER2 and elevated IGF-IR signaling have been implicated in tumor cell resistance to trastuzumab therapy. Previously, we reported that the anti-IGF-IR mAb m590 inhibits proliferation and migration of breast cancer MCF-7 cells in vitro. Here, we generated a 'knobs-into-holes' bispecific antibody (Bi-Ab) against HER2 and IGF-IR by engineering trastuzumab and m590. We compared the effects of Bi-Ab treatment in vitro and in SKOV-3 HER2- and IGF-IR-overexpressing cancer xenograft mouse model with those of m590 and trastuzumab treatment alone or in combination. Bi-Ab effectively inhibited proliferation of HER2- and IGF-IR-overexpressing ovarian cancer SKOV-3 cells in vitro by ablating receptor phosphorylation and downstream PI3K/Akt and mitogen-activated protein kinase signaling. Bi-Ab more effectively inhibited cancer growth in SKOV-3 HER2- and IGF-IR-overexpressing cancer xenograft mouse model than m590 and trastuzumab alone or in combination. Mice bearing SKOV-3 HER2- and IGF-IR-overexpressing xenografts showed extensive and sustainable tumor regression when treated with Bi-Ab. Our results suggest that Bi-Ab has superior antitumor activity compared with monospecific antibodies, and cotargeting HER2 and IGF-IR may be clinically beneficial in minimizing the acquired resistance to trastuzumab therapy. Mol Cancer Ther; 13(1); 90-100. (c)2013 AACR.postprin
Hepatoprotective effects of Coptidis rhizoma aqueous extract on carbon tetrachloride-induced acute liver hepatotoxicity in rats
Aim of the study: Coptidis rhizoma (CR, Chinese name is Huanglian) has been used in treating infectious and inflammatory diseases for two thousand years in Traditional Chinese Medicine (TCM). Its related pharmacological basis for the therapeutics has been studied intensively, but CR can also be used for vomiting of "dampness-heat type or acid regurgitation" due to "liver-fire attacking stomach" in TCM, whose symptoms seem to link the hepatic and biliary disorders, yet details in the therapies of liver diseases and underlying mechanism(s) remain unclear. To clarify this ethnopharmacological relevance, hepatoprotective effect of Coptidis rhizoma aqueous extract (CRAE) and its possible mechanism were studied in rats intoxicated with carbon tetrachloride (CCl 4) in the present study. Materials and methods: Sprague-Dawley (SD) rats aged 7 weeks old were intraperitoneally injected with CCl 4 at a dose of 1.0 ml/kg as a 50% olive oil solution. The rats were orally given the CRAE at doses of 400, 600, 800 mg/kg and 120 mg/kg berberine body weight (BW) after 6 h of CCl 4 treatment. At 24 h after CCl 4 injection, samples of blood and liver were collected and then biochemical parameters and histological studies were carried out. Results: The results showed that CRAE and berberine inhibited significantly the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and increased the activity of superoxide dismutase (SOD). Observation on the hepatoprotective effect of berberine was consistent to that of CRAE. Conclusion: The study is the first time to demonstrate that CRAE has hepatoprotective effect on acute liver injuries induced by CCl 4, and the results suggest that the effect of CRAE against CCl 4-induced liver damage is related to antioxidant property. © 2009 Elsevier Ireland Ltd. All rights reserved.postprin
Decreased MCM2-6 in Drosophila S2 cells does not generate significant DNA damage or cause a marked increase in sensitivity to replication interference.
A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment
How metal films de-wet substrates - identifying the kinetic pathways and energetic driving forces
We study how single-crystal chromium films of uniform thickness on W(110)
substrates are converted to arrays of three-dimensional (3D) Cr islands during
annealing. We use low-energy electron microscopy (LEEM) to directly observe a
kinetic pathway that produces trenches that expose the wetting layer. Adjacent
film steps move simultaneously uphill and downhill relative to the staircase of
atomic steps on the substrate. This step motion thickens the film regions where
steps advance. Where film steps retract, the film thins, eventually exposing
the stable wetting layer. Since our analysis shows that thick Cr films have a
lattice constant close to bulk Cr, we propose that surface and interface stress
provide a possible driving force for the observed morphological instability.
Atomistic simulations and analytic elastic models show that surface and
interface stress can cause a dependence of film energy on thickness that leads
to an instability to simultaneous thinning and thickening. We observe that
de-wetting is also initiated at bunches of substrate steps in two other
systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are
converted into patterns of unidirectional stripes as the trenches that expose
the wetting layer lengthen along the W[001] direction. Finally, we observe how
3D Cr islands form directly during film growth at elevated temperature. The Cr
mesas (wedges) form as Cr film steps advance down the staircase of substrate
steps, another example of the critical role that substrate steps play in 3D
island formation
Energetics and atomic mechanisms of dislocation nucleation in strained epitaxial layers
We study numerically the energetics and atomic mechanisms of misfit
dislocation nucleation and stress relaxation in a two-dimensional atomistic
model of strained epitaxial layers on a substrate with lattice misfit.
Relaxation processes from coherent to incoherent states for different
transition paths are studied using interatomic potentials of Lennard-Jones type
and a systematic saddle point and transition path search method. The method is
based on a combination of repulsive potential minimization and the Nudged
Elastic Band method. For a final state with a single misfit dislocation, the
minimum energy path and the corresponding activation barrier are obtained for
different misfits and interatomic potentials. We find that the energy barrier
decreases strongly with misfit. In contrast to continuous elastic theory, a
strong tensile-compressive asymmetry is observed. This asymmetry can be
understood as manifestation of asymmetry between repulsive and attractive
branches of pair potential and it is found to depend sensitively on the form of
the potential.Comment: 11 pages, 9 figures, to appear in Phys. Rev.
Efficient immortalization of primary nasopharyngeal epithelial cells for EBV infection study.
Nasopharyngeal carcinoma (NPC) is common among southern Chinese including the ethnic Cantonese population living in Hong Kong. Epstein-Barr virus (EBV) infection is detected in all undifferentiated type of NPC in this endemic region. Establishment of stable and latent EBV infection in premalignant nasopharyngeal epithelial cells is an early event in NPC development and may contribute to its pathogenesis. Immortalized primary nasopharyngeal epithelial cells represent an important tool for investigation of EBV infection and its tumorigenic potential in this special type of epithelial cells. However, the limited availability and small sizes of nasopharyngeal biopsies have seriously restricted the establishment of primary nasopharyngeal epithelial cells for immortalization. A reliable and effective method to immortalize primary nasopharyngeal epithelial cells will provide unrestricted materials for EBV infection studies. An earlier study has reported that Bmi-1 expression could immortalize primary nasopharyngeal epithelial cells. However, its efficiency and actions in immortalization have not been fully characterized. Our studies showed that Bmi-1 expression alone has limited ability to immortalize primary nasopharyngeal epithelial cells and additional events are often required for its immortalization action. We have identified some of the key events associated with the immortalization of primary nasopharyngeal epithelial cells. Efficient immortalization of nasopharyngeal epithelial cells could be reproducibly and efficiently achieved by the combined actions of Bmi-1 expression, activation of telomerase and silencing of p16 gene. Activation of MAPK signaling and gene expression downstream of Bmi-1 were detected in the immortalized nasopharyngeal epithelial cells and may play a role in immortalization. Furthermore, these newly immortalized nasopharyngeal epithelial cells are susceptible to EBV infection and supported a type II latent EBV infection program characteristic of EBV-infected nasopharyngeal carcinoma. The establishment of an efficient method to immortalize primary nasopharyngeal epithelial cells will facilitate the investigation into the role of EBV infection in pathogenesis of nasopharyngeal carcinoma.published_or_final_versio
Measuring kinetic coefficients by molecular dynamics simulation of zone melting
Molecular dynamics simulations are performed to measure the kinetic
coefficient at the solid-liquid interface in pure gold. Results are obtained
for the (111), (100) and (110) orientations. Both Au(100) and Au(110) are in
reasonable agreement with the law proposed for collision-limited growth. For
Au(111), stacking fault domains form, as first reported by Burke, Broughton and
Gilmer [J. Chem. Phys. {\bf 89}, 1030 (1988)]. The consequence on the kinetics
of this interface is dramatic: the measured kinetic coefficient is three times
smaller than that predicted by collision-limited growth. Finally,
crystallization and melting are found to be always asymmetrical but here again
the effect is much more pronounced for the (111) orientation.Comment: 8 pages, 9 figures (for fig. 8 : [email protected]). Accepted for
publication in Phys. Rev.
Heteroepitaxy of and on GaAs (111)A by Atomic Layer Deposition: Achieving Low Interface Trap Density
GaAs metal–oxide–semiconductor devices historically suffer from Fermi-level pinning, which is mainly due to the high trap density of states at the oxide/GaAs interface. In this work, we present a new way of passivating the interface trap states by growing an epitaxial layer of high-k dielectric oxide, , on GaAs(111)A. High-quality epitaxial thin films are achieved by an ex situ atomic layer deposition (ALD) process, and GaAs MOS capacitors made from this epitaxial structure show very good interface quality with small frequency dispersion and low interface trap densities . In particular, the /GaAs interface, which has a lattice mismatch of only 0.04%, shows very low in the GaAs bandgap, below near the conduction band edge. The /GaAs capacitors also show the lowest frequency dispersion of any dielectric on GaAs. This is the first achievement of such low trap densities for oxides on GaAs.Chemistry and Chemical Biolog
Boojums and the Shapes of Domains in Monolayer Films
Domains in Langmuir monolayers support a texture that is the two-dimensional
version of the feature known as a boojum. Such a texture has a quantifiable
effect on the shape of the domain with which it is associated. The most
noticeable consequence is a cusp-like feature on the domain boundary. We report
the results of an experimental and theoretical investigation of the shape of a
domain in a Langmuir monolayer. A further aspect of the investigation is the
study of the shape of a ``bubble'' of gas-like phase in such a monolayer. This
structure supports a texture having the form of an inverse boojum. The
distortion of a bubble resulting from this texture is also studied. The
correspondence between theory and experiment, while not perfect, indicates that
a qualitative understanding of the relationship between textures and domain
shapes has been achieved.Comment: replaced with published version, 10 pages, 13 figures include
- …
