25,464 research outputs found

    High Input Impedance Voltage-Mode Universal Biquadratic Filters With Three Inputs Using Three CCs and Grounding Capacitors

    Get PDF
    Two current conveyors (CCs) based high input impedance voltage-mode universal biquadratic filters each with three input terminals and one output terminal are presented. The first circuit is composed of three differential voltage current conveyors (DVCCs), two grounded capacitors and four resistors. The second circuit is composed of two DVCCs, one differential difference current conveyor (DDCC), two grounded capacitors and four grounded resistors. The proposed circuits can realize all the standard filter functions, namely, lowpass, bandpass, highpass, notch and allpass filters by the selections of different input voltage terminals. The proposed circuits offer the features of high input impedance, using only grounded capacitors and low active and passive sensitivities. Moreover, the x ports of the DVCCs (or DDCC) in the proposed circuits are connected directly to resistors. This design offers the feature of a direct incorporation of the parasitic resistance at the x terminal of the DVCC (DDCC), Rx, as a part of the main resistance

    Bounce-free spherical hydrodynamic implosion

    Full text link
    In a bounce-free spherical hydrodynamic implosion, the post-stagnation hot core plasma does not expand against the imploding flow. Such an implosion scheme has the advantage of improving the dwell time of the burning fuel, resulting in a higher fusion burn-up fraction. The existence of bounce-free spherical implosions is demonstrated by explicitly constructing a family of self-similar solutions to the spherically symmetric ideal hydrodynamic equations. When applied to a specific example of plasma liner driven magneto-inertial fusion, the bounce-free solution is found to produce at least a factor of four improvement in dwell time and fusion energy gain.Comment: accepted by Phys. Plasmas (Nov. 7, 2011); for Ref. 11, please see ftp://ftp.lanl.gov/public/kagan/liner_evolution.gi

    Intrapore-Texturized Vanadia-Hydrate Supercapacitor with Ultrahigh Area-Normalized Capacitance

    Get PDF
    A pressing need for ultrahigh area‐normalized capacitance emerges from the migration to miniaturized composite supercapacitors. Herein, an advanced electric field‐assisted sol–gel synthesis protocol that allows to obtain ribbon‐like vanadium oxides that preferentially creep along the porous tunnels in a commercially available carbon host of low density is demonstrated. In particular, this design offers 1) to convert the original submicrometer‐sized pore network into hierarchically macroporous yet 3D‐interconnected bicontinuous composite frameworks and 2) to considerably add pseudo‐capacitive functionalities onto a highly conductive carbon cloth backbone. Both are demonstrated by an unprecedented area‐normalized capacitance exceeding 5 F cm−2. Moreover, the as‐designed symmetric supercapacitor is characterized by a maximum area‐normalized cell capacitance in the order of 1 F cm−2, a geometric energy density of 0.34 mW h cm−2, and a geometric power density of 28.3 mW cm−2. These features outperform commercial double‐layer supercapacitors as well as many state‐of‐the‐art composite pseudo‐capacitors and lithium‐ion microbatteries

    Nonmagnetic impurity perturbation to the quasi-two-dimensional quantum helimagnet LiCu2O2

    Full text link
    A complete phase diagram of Zn substituted quantum quasi-two-dimensional helimagnet LiCu2O2 has been presented. Helical ordering transition temperature (T_h) of the original LiCu2O2 follows finite size scaling for less than ~ 5.5% Zn substitution, which implies the existence of finite helimagnetic domains with domain boundaries formed with nearly isolated spins. Higher Zn substitution > 5.5% quenches the long-range helical ordering and introduces an intriguing Zn level dependent magnetic phase transition with slight thermal hysteresis and a universal quadratic field dependence for T_c (Zn > 0.055,H). The magnetic coupling constants of nearest-neighbor (nn) J1 and next-nearest-neighbor (nnn) J2 (alpha=J2/J1) are extracted from high temperature series expansion (HTSE) fitting and N=16 finite chain exact diagonalization simulation. We have also provided evidence of direct correlation between long-range helical spin ordering and the magnitude of electric polarization in this spin driven multiferroic material

    Fabrication and Low Temperature Thermoelectric Properties of Na_xCoO_2 (x = 0.68 and 0.75) Epitaxial Films by the Reactive Solid-Phase Epitaxy

    Full text link
    We have fabricated Na_xCoO_2 thin films via lateral diffusion of sodium into Co_3O_4 (111) epitaxial films (reactive solid-phase epitaxy: Ref. 4). The environment of thermal diffusion is key to the control of the sodium content in thin films. From the results of x-ray diffraction and in-plane resistivity, the epitaxial growth and the sodium contents of these films were identified. The thermoelectric measurements show a large thermoelectric power similar to that observed in single crystals. The quasiparticle scattering rate is found to approach zero at low temperatures, consistent with the small residual resistivity, indicating high quality of the Na_xCoO_2 thin films.Comment: 16 pages. 4 figures. To appear in Applied Physics Letter

    Precise Pressure Dependence of the Superconducting Transition Temperature of FeSe: Resistivity and ^77Se--NMR Study

    Full text link
    We report the precise pressure dependence of FeSe from a resistivity measurement up to 4.15 GPa. Superconducting transition temperature (T_c) increases sensitively under pressure, but shows a plateau between 0.5-1.5 GPa. The maximum T_c, which is determined by zero resistance, is 21 K at approximately 3.5 GPa. The onset value reaches ~37 K at 4.15 GPa. We also measure the nuclear spin-lattice relaxation rate 1/T_1 under pressure using 77Se--NMR measurement. 1/T_1 shows that bulk superconductivity is realized in the zero-resistance state. The pressure dependence of 1/T_1T just above T_c shows a plateau as well as the pressure dependence of T_c, which gives clear evidence of the close relationship between 1/T_1T and T_c. Spin fluctuations are suggested to contribute to the mechanism of superconductivity.Comment: 4pages, 6figures: to be published in J. Phys. Soc. Jpn. Vol.78 No.6 (2009

    Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry

    Full text link
    Three dimensional hydrodynamic simulations have been performed using smoothed particle hydrodynamics (SPH) in order to study the effects of discrete jets on the processes of plasma liner formation, implosion on vacuum, and expansion. The pressure history of the inner portion of the liner was qualitatively and quantitatively similar from peak compression through the complete stagnation of the liner among simulation results from two one dimensional radiationhydrodynamic codes, 3D SPH with a uniform liner, and 3D SPH with 30 discrete plasma jets. Two dimensional slices of the pressure show that the discrete jet SPH case evolves towards a profile that is almost indistinguishable from the SPH case with a uniform liner, showing that non-uniformities due to discrete jets are smeared out by late stages of the implosion. Liner formation and implosion on vacuum was also shown to be robust to Rayleigh-Taylor instability growth. Interparticle mixing for a liner imploding on vacuum was investigated. The mixing rate was very small until after peak compression for the 30 jet simulation.Comment: 28 pages, 16 figures, submitted to Physics of Plasmas (2012

    Brushing Element Fields

    Get PDF
    Aggregate elements following certain directions have a variety of applications in graphics, design, and visualization. However, authoring oriented elements in various output domains, especially in 3D, remains challenging. We propose a novel brushing system to facilitate interactive authoring of aggregate elements with diverse properties over given output domains via an element synthesis approach. To increase output quality and reduce input workload, we further propose element fields that can automatically orient the entire elements in better alignments over the output domains according to partially user-specified strokes. The proposed system can effectively synthesize distinct types of elements within various output domains in higher quality and efficiency and offer more user friendliness than existing practices. Our method can be applied to practical applications such as graphic design, artistic collage, and aggregate modelin
    corecore