47,118 research outputs found
and cross sections
Inspired by the recent findings of the two states in the
mass spectrum at LHCb, we investigate the elastic and inelastic cross sections
of the , , and channels within the
constraints from heavy quark spin and flavour symmetry. The () bound states predicted in earlier
works should be accessible in elastic and/or inelastic processes of the and/or ( and/or ) interactions.Comment: Minor correction
Growth of single-crystal columns of CoSi2 embedded in epitaxial Si on Si(111) by molecular beam epitaxy
The codeposition of Si and Co on a heated Si(111) substrate is found to result in epitaxial columns of CoSi2 if the Si:Co ratio is greater than approximately 3:1. These columns are surrounded by a Si matrix which shows bulk-like crystalline quality based on transmission electron microscopy and ion channeling. This phenomenon has been studied as functions of substrate temperature and Si:Co ratio. Samples with columns ranging in average diameter from approximately 25 to 130 nm have been produced
Baryon states with open beauty in the extended local hidden gauge approach
In this paper we examine the interaction of \bar B N, \bar B \Delta, \bar B^*
N and \bar B^* \Delta states, together with their coupled channels, using a
mapping from the light meson sector. The assumption that the heavy quarks act
as spectators at the quark level automatically leads us to the results of the
heavy quark spin symmetry for pion exchange and reproduces the results of the
Weinberg Tomozawa term, coming from light vector exchanges in the extended
local hidden gauge approach. With this dynamics we look for states dynamically
generated from the interaction and find two states with nearly zero width,
which we associate to the \Lambda_b(5912) and \Lambda_b(5920) states. The
states couple mostly to \bar B^* N, which are degenerate with the Weinberg
Tomozawa interaction. The difference of masses between these two states, with
J=1/2, 3/2 respectively, is due to pion exchange connecting these states to
intermediate \bar B N states. In addition to these two \Lambda_b states, we
find three more states with I=0, one of them nearly degenerate in two states of
J=1/2,3/2. Furthermore we also find eight more states in , two of them
degenerate in J=1/2, 3/2, and other two degenerate in J=1/2, 3/2, 5/2.Comment: 26 pages, 9 figures, 24 table
, and molecules
We investigate theoretically baryon systems made of three hadrons which
contain one nucleon and one D meson, and in addition another meson, or . The systems are studied using the Fixed Center Approximation
to the Faddeev equations. The study is made assuming scattering of a or a
on a cluster, which is known to generate the ,
or the scattering of a nucleon on the cluster, which has been shown
to generate a hidden charm resonance named X(3700). We also investigate the
configuration of scattering of on the cluster, which is known to
generate the . In all cases we find bound states, with the
system, of exotic nature, more bound than the .Comment: 9 figure
Description of as a system with the fixed center approximation
We study the system with an aim to describe the
resonance. The chiral unitary approach has achieved success in a description of
systems of the light hadron sector. With this method, the system in
the isospin sector , is found to be a dominant component of the resonance. Therefore, by regarding the system as a cluster,
the resonance, we evaluate the system applying the
fixed center approximation to the Faddeev equations. We construct the
unitarized amplitude using the chiral unitary approach. As a result, we find a
peak in the three-body amplitude around 1739 MeV and a width of about 227 MeV.
The effect of the width of and is also discussed. We
associate this peak to the which has a mass of MeV
and a width of MeV
Baryon states with open charm in the extended local hidden gauge approach
In this paper we examine the interaction of and states,
together with their coupled channels, by using an extension of the local hidden
gauge formalism from the light meson sector, which is based on heavy quark spin
symmetry. The scheme is based on the use of the impulse approximation at the
quark level, with the heavy quarks acting as spectators, which occurs for the
dominant terms where there is the exchange of a light meson. The pion exchange
and the Weinberg-Tomozawa interactions are generalized and with this dynamics
we look for states generated from the interaction, with a unitary coupled
channels approach that mixes the pseudoscalar-baryon and vector-baryon states.
We find two states with nearly zero width which are associated to the
and . The lower state, with ,
couples to and , and the second one, with , to . In addition to these two states, we find four more states with
, one of them nearly degenerate in two states of .
Furthermore we find three states in , two of them degenerate in .Comment: v3: version to appear in Eur.Phys.J.
Heavy quark spin symmetric molecular states from and other coupled channels in the light of the recent LHCb pentaquarks
We consider the states, together with and other coupled channels, and take an interaction consistent with heavy
quark spin symmetry, with the dynamical input obtained from an extension of the
local hidden gauge approach. By fitting only one parameter to the recent three
pentaquark states reported by the LHCb collaboration, we can reproduce the
three of them in base to the mass and the width, providing for them the quantum
numbers and approximate molecular structure as ,
, and , and isospin
. We find another state around 4374 MeV, of
structure, for which indications appear in the experimental spectrum. Two other
near degenerate states of and nature are also found around 4520 MeV, which although less clear,
are not incompatible with the observed spectrum. In addition, a state at the same energy appears, which however does not couple
to in wave, and hence it is not expected to show up in the LHCb
experiment.Comment: 8 page
Driving light pulses with light in two-level media
A two-level medium, described by the Maxwell-Bloch (MB) system, is engraved
by establishing a standing cavity wave with a linearly polarized
electromagnetic field that drives the medium on both ends. A light pulse,
polarized along the other direction, then scatters the medium and couples to
the cavity standing wave by means of the population inversion density
variations. We demonstrate that control of the applied amplitudes of the
grating field allows to stop the light pulse and to make it move backward
(eventually to drive it freely). A simplified limit model of the MB system with
variable boundary driving is obtained as a discrete nonlinear Schroedinger
equation with tunable external potential. It reproduces qualitatively the
dynamics of the driven light pulse
Towards an improved understanding of eta --> gamma^* gamma^*
We argue that high-quality data on the reaction
will allow one to determine the double off-shell form factor in a model-independent way with controlled accuracy. This is
an important step towards a reliable evaluation of the hadronic light-by-light
scattering contribution to the anomalous magnetic moment of the muon. When
analyzing the existing data for in the range of
total energies , we demonstrate that the
double off-shell form factor is
consistent with the commonly employed factorization ansatz at least for
, if the effect of the meson is taken into account.
However, better data are needed to draw firm conclusions.Comment: 7 pages, 3 figure
- …
