59,425 research outputs found

    Investigation of Micro Porosity Sintered wick in Vapor Chamber for Fan Less Design

    Get PDF
    Micro Porosity Sintered wick is made from metal injection molding processes, which provides a wick density with micro scale. It can keep more than 53 % working fluid inside the wick structure, and presents good pumping ability on working fluid transmission by fine infiltrated effect. Capillary pumping ability is the important factor in heat pipe design, and those general applications on wick structure are manufactured with groove type or screen type. Gravity affects capillary of these two types more than a sintered wick structure does, and mass heat transfer through vaporized working fluid determines the thermal performance of a vapor chamber. First of all, high density of porous wick supports high transmission ability of working fluid. The wick porosity is sintered in micro scale, which limits the bubble size while working fluid vaporizing on vapor section. Maximum heat transfer capacity increases dramatically as thermal resistance of wick decreases. This study on permeability design of wick structure is 0.5 - 0.7, especially permeability (R) = 0.5 can have the best performance, and its heat conductivity is 20 times to a heat pipe with diameter (Phi) = 10mm. Test data of this vapor chamber shows thermal performance increases over 33 %.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Implications of SNO and BOREXINO results on Nuetrino Oscillations and Majorana Magnetic Moments

    Get PDF
    Using the recent measurement of SNO salt phase experiment, we investigate how much the solar neutrino flux deficit observed at SNO could be due to νe\nu_e transition into antineutrino. Our analysis leads to rather optimistic conclusion that the SNO salt phase data may indicate the existence of Majorana magnetic moment. The prospect for the future BOREXINO experiment is also discussed.Comment: 8 page

    Large amplitude flutter of a low aspect ratio panel at low supersonic speeds comparison of theory and experiment

    Get PDF
    Flutter boundaries, as well as flutter limit cycle amplitudes, frequencies and stresses were computed for a panel of length-width ratio 4.48 exposed to applied in-plane and transverse loads. The Mach number range was 1.1 to 1.4. The method used involved direct numerical integration of modal equations of motion derived from the nonlinear plate equations of von Karman, coupled with linearized potential flow aerodynamic theory. The flutter boundaries agreed reasonably well with experiment, except when the in-plane loading approached the buckling load. Structural damping had to be introduced, to produce frequencies comparable to the experimental values. Attempts to compute panel deflections or stress at a given point met with limited success. There is some evidence, however, that deflection and stress maxima can be estimated with somewhat greater accuracy
    corecore