LARGE AMPLITUDE FLUTTER OF A LOW

ASPECT RATIO PANEL AT LOW SUPERSONIC SPEEDS

COMPARISON OF THEORY AND EXPERIMENT

by
C. S. Ventres
C. K. Kang
prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Marshall Space Flight Center
Contract NAS 8-28577

August 1973

PRINCETON UNIVERSITY

Department of Aerospace and Mechanical Sciences
The Aeroelastic and Magnetoelastic Laboratory

AMS Report No. 1116

Abstract

Flutter boundaries, as well as flutter limit cycle amplitudes, frequencies and stresses were computed for a panel of length-width ratio 4.48 exposed to applied in-plane and transverse loads. The Mach number range was 1.1 to 1.4 . The method used involved direct numerical integration of modal equations of motion derived from the nonlinear plate equations of von Karman, coupled with linearized potential flow aerodynamic theory. The results obtained were compared to experimental data reported in Ref. 5.

The flutter boundaries agreed reasonably well with experiment, except when the in-plane loading approached the buckling load. Structural damping had to be introduced, to produce frequencies comparable to the experimental values. Attempts to compute panel deflections or stress at a given point met with limited success. There is some evidence, however, that deflection and stress maxima can be estimated with somewhat greater accuracy.

TABLE OF CONTENTS

Page
Abstract i
Table of Contents ii
Nomenclature iii
I. Introduction 1
II. Theoretical Development 3
III. Computational Considerations 8
IV. Numerical Results 12
V. Conclusions 20
References 22
List of Figures 23
Appendix

NOMENCLATURE

a	= panel length
a_{n}	$=$ modal amplitude
b	= panel width
$\mathrm{B}_{\mathbf{i j k} \ell}$	$=$ nonlinear elastic terms
c	$=$ speed of sound
D	= panel bending stiffness
G_{S}	$=$ structural damping factor
$\mathbf{g}_{\mathbf{s}} \equiv \frac{G}{\mathbf{s}}\left(\frac{\mathrm{D}}{\rho_{\mathrm{m}} \mathrm{ha}}{ }^{\text {a }}\right)^{1 / 2}$	$=$ dimensionless structural damping factor
h	= panel thickness
. $\mathrm{jiF}, \mathrm{I}_{\mathrm{ji}}$	$=$ aerodynamic admittance functions (Eq. 10)
$K=\omega\left[\frac{p_{m} h a^{4}}{D}\right]^{1 / 2}$	= dimensionless flutter frequency
M	= Mach Number
N	$=$ number of modes used (Eq. 3)
${ }^{\mathrm{N}} \mathrm{x}$	$=R_{x} / R_{x}$ buckle
p	= pressure
$q=\frac{1}{2} \rho U^{2}$	= dynamic pressure
$Q_{j i}$	$=$ generalized aerodynamic force (eq. 10)
R_{x}.	= streamwise applied in-plane load
$s \equiv\left(\lambda^{*} / \mu\right)^{1 / 2} \tau$	= dimensionless aerodynamic time

U
= flow velocity
= panel deflection
$=$ coordinates in plane of plate
$=$ coordinate normal to plate

Greek

$$
\begin{aligned}
& \delta_{i j} \quad=\text { Kronecker delta } \\
& \Delta \mathrm{p} \quad=\text { static pressure differential } \\
& \Delta \mathrm{P} \equiv \frac{\Delta \mathrm{pa}^{4}}{\mathrm{Dh}} \quad=\text { dimensionless static pressure differential } \\
& \lambda^{*} \equiv \frac{\rho^{2} a^{3}}{D} \quad=\text { dimensionless flow dynamic pressure } \\
& \mu \equiv \rho a / \rho_{m} h \quad=\text { dimensionless flow density } \\
& v \\
& =\text { Poisson's ratio } \\
& \text { = flow density } \\
& \text { = pane1 density } \\
& \text { = panel stresses } \\
& =\text { dimensionless time } \\
& \text { = velocity potential } \\
& =\text { Airy stress function } \\
& =\text { modal function (Eq. 3) } \\
& =\text { flutter frequency }
\end{aligned}
$$

I. INTRODUCTION

It is now well established that panel flutter is not, in many cases, an immediately destructive vibration. Hence flutter may be tolerated if it can be established that the flutter amplitude is sufficiently small and the duration of flutter sufficiently short. Unfortunately linear structural and aerodynamic theory is incapable of determining flutter amplitudes. Only by including the important panel nonlinearities can the flutter amplitude be established. Recently, methods have been developed at Princeton for analyzing the large amplitude oscillations of a fluttering plate. ${ }^{1-4}$ In the investigation reported here, these methods were used to calculate the flutter behavior of a panel exposed to a static pressure differential (that is, an applied transverse pressure load), and to applied in-plane compressive loads comparable to the buckiing load of the panel.

The panel length-width ratio (4.48), and the range of flow Mach number (1.1 to 1.4) were selected to allow comparison with the results of wind tunnel tests reported in Reference 5. These tests were in turn motivated by a desire to investigate the flutter behavior of certain panels mounted on the forward shirt of the S IV-B stage of the Saturn V launch vehicle. ${ }^{5}$ During these tests, the frequency and amplitude of the panel motion (if any) were measured as the tunnel dynamic pressure was increased. The tests were carried out at various values of test section Mach number, panel static pressure differential, and applied in-plane load. By this method both the panel flutter boundaries (lowest dynamic pressure at which flutter occurrred) and the severity of the post flutter motion were determined.

The calculations described herein were carried out for the same range of parameters as used in Ref. 5. The method used involves the direct numerical
integration of a set of nonlinear differential equations for the panel motion, derived from an approximate modal solution of the von Karman nonlinear plate equations. Because of the range of Mach numbers involved, the popular quasi-steady or piston theory expressions for the aerodynamic pressure on the panel were not applicable. Instead the full linearized inviscid, potential flow theory was employed.

So far as is known, the work reported herein constitutes the first attempt at predicting theoretically the severity of flutter of a low aspect ratio stressed panel in the critical low supersonic Mach number range.

II. THEORETICAL DEVELOPMENT

The equations of motion for a three dimensional plate, von Karman's large deflection equations, ${ }^{6}$ are

$$
\begin{align*}
& D \nabla^{4} w=\frac{\partial^{2} \Phi}{\partial y^{2}} \frac{\partial^{2} w}{\partial x^{2}}-2 \frac{\partial^{2} \Phi}{\partial x \partial y} \frac{\partial^{2} w}{\partial x \partial y}+\frac{\partial^{2} \Phi}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}} \tag{1}\\
&-\rho_{m} h \frac{\partial^{2} w}{\partial t^{2}}-G_{s} \nabla^{4} \frac{\partial W}{\partial t}-\left(p-p_{\infty}\right)+\Delta p=0 \\
& \frac{\nabla^{4} \Phi}{E h}=\left(\frac{\partial^{2} w}{\partial x \partial y}\right)^{2}-\frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}} \tag{2}
\end{align*}
$$

where w is the plate deflection and Φ is the Airy stress function. G is a structural damping parameter. The reason for including structural damping will be discussed 1ater. Equation (2) and the first three terms on the right hand side of equation (1) constitute the non1inear elastic coup1ing between out-of-plane bending and in-plane stretching that ultimately limits the amplitude of flutter.

Equations (1) and (2) are reduced to a set of simultaneous nonlinear differential equations by Galerkin's method. The transverse displacement w is expressed as a linear combination of modal functions that satisfy the appropriate boundary conditions at the edge of the plate (in this case, those for a clamped plate):

$$
\begin{align*}
& w / h=\sum_{m=1}^{N} a_{m}(t) \psi_{m}(x / a) \psi_{1}(y / b) \tag{3}\\
& \psi_{m}(\zeta) \equiv \cos (m-1) \zeta-\cos (m+1) \zeta
\end{align*}
$$

As is described in greater detail in Refs. $1-4, \quad \Phi$ is determined by solving equation (2) with expression (3) inserted for w. The boundary conditions satisfied by Φ on the plate edges (the so-called in-plane boundary conditions) depend on the design of the panel support structure. In Refs. 3 and 4 methods of handling situations corresponding to either complete restraint (no in-plane motion permitted at the edges) or zero restraint (in-plane stresses zero at the edges) are discussed. It is not generally feasible to distinguish between these two alternate sets of boundary conditions beforehand by analyzing the panel support structure (and in fact most practical structures would create a degree of restraint somewhere between the two extremes), so both sets are retained in the developments that follow. With Φ determined, equation (1) is satisfied in the Galerkin sense by computing the integral average of equation (1) weighted successively by each of the modal functions $\psi_{i}(x / a) \psi_{l}(y / b)$ in expression (3) and setting the result to zero. The resulting system of equations is (in nondimensional form):

$$
\begin{align*}
& \sum_{j} S_{i j}\left(\ddot{a}_{j}+g_{s} \dot{a}_{j}\right)+\sum_{j} C_{i j} a_{j} \tag{4}\\
& +\sum_{j} \sum_{k \ell} \sum_{i j k \ell} a_{j} a_{k} a_{\ell}+\lambda^{*} \sum_{j} Q_{j i}-\Delta P{ }_{l i}=0
\end{align*}
$$

The matrices S and C are the familiar modal mass and elastic stiffness matrices of linear vibration theory. C contains the applied streamwise in-plane tension R_{x} as a parameter; when R_{x} decreases below a critical negative value, the plate buckles. The fourth order array B contains the nonlinear terms corresponding to the coupling between in-plane stretching and
and out-of-plane bending referred to previously. Explicit expressions for all of these terms are contained in Ref. 4.

The generalized aerodynamic forces $Q_{j i}$ are defined as

$$
\begin{equation*}
Q_{j i} \equiv \int_{0}^{1} \int_{0}^{1}\left(\frac{p_{j}-p_{\infty}}{\rho U^{2}}\right) \quad \psi_{i}(x / a) \psi_{1}(y / b) \frac{d x}{a} \frac{d y}{b} \tag{5}
\end{equation*}
$$

where p_{j} is the pressure on the plate caused by an arbitrary deflection in the j th mode:

$$
\begin{equation*}
w \equiv a_{j}(\tau) \psi_{j}(x / a) \psi_{1}(y / b) \tag{6}
\end{equation*}
$$

p_{j} is given by

$$
\begin{equation*}
p_{j}=-\left.\rho\left(\frac{\partial \phi}{\partial t}+U \frac{\partial \phi}{\partial x}\right)\right|_{z=0} \tag{7}
\end{equation*}
$$

where the velocity potential ϕ must satisfy

$$
\begin{equation*}
\nabla^{2} \phi-\frac{1}{c^{2}}\left(\frac{\partial}{\partial t}+U \frac{\partial}{\partial x}\right)^{2} \phi=0 \tag{8}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{align*}
\left.\frac{\partial \phi}{\partial z}\right|_{z=0} & =\frac{\partial w}{\partial t}+U \frac{\partial w}{\partial x} & & \text { on plate } \tag{9}\\
& =0 & & \text { off p1ate }
\end{align*}
$$

The boundary value problem defined by Eqs. (6-9) has been solved in Ref. 7, where it is shown that

$$
\begin{align*}
Q_{j i}= & \frac{1}{M}\left(a_{j} D_{j i}+\frac{d a_{j}}{d s} S_{j i}\right) \\
& +\int_{0}^{s} a_{j}(\sigma) H_{j i}(\sigma) d \sigma \tag{10}\\
& +\int_{0}^{s} \frac{d a_{j}(\sigma)}{d \sigma} I_{j i}(s-\sigma) d \sigma
\end{align*}
$$

with

$$
\begin{equation*}
s=\left(\lambda^{*} / \mu\right)^{1 / 2} \tau \tag{11}
\end{equation*}
$$

See Ref. 7 or Appendix B of Ref. 4 for evaluations of $D_{j i}, S_{j i}, H_{j i}(s)$, and $I_{\mathbf{j i}}(s)$. (Beware of slight notational differences between the two.) These functions depend parametrically on M and a / b, but not explicitly on λ^{*} and μ. If the integrals in (10) are deleted, the $Q_{j i}$ are those given by "piston theory"; that is by a direct substitution of the well known expression

$$
p-p_{\infty}=\frac{\rho U^{2}}{M} \quad\left(\frac{\partial w}{\partial x}+\frac{1}{U} \frac{\partial w}{\partial t}\right)
$$

into equation (1).
Equations (4) and (10) are combined to form a set of coupled non1inear ordinary integral-differential equations in time, τ. The solution procedure is to specify $\lambda^{*}, \mu, M, \Delta p, a / b, R_{x}, g_{s}$, and to determine the modal amplitudes by numerical integration. Given the $a_{n}(\tau)$, the deflection
w / h or stresses σ_{x}, σ_{y} at any selected point on the panel may be calculated in a straightforward manner. The computer programs used to carry out these various procedures are listed in the Appendix. These routines are modified and improved version of the programs listed in Ref. 4.
III. COMPUTATIONAL CONSIDERATIONS

The considerations of this section relate to the manner in which the computations were arranged and carried out, and to the way in which the results obtained have been displayed. They have been dictated both by the nature of the wind tunnel experiments reported in Ref. 5, and by the necessity of using a very large number of modes (12 in most cases) in order to properly represent the behavior of the low aspect ratio panel being studied.

In order to save computer time (and hence expense) it was found useful to divide the computations into four distinct steps. These are:

1) Computation of the nonlinear terms. Only the plate length width ration a / b, the Poisson's ratio ν, and the in-plane boundary conditions need be specified in order to determine B. Since the results were to be compared with the data of Ref. 5 , only one value of $a / b(=4.48)$ and $v(=0.3)$ were employed. Hence only two sets of nonlinear terms, corresponding to complete and zero in-plane edge restraint, were required. These were computed at the outset, and stored on magnetic tape.
2) Computation of the aerodynamic admittance functions $H_{i j}(a / b, M, s)$ $H_{i j}(a / b, M, s)$ (see Eq. 10). As indicated, these quantities depend on the panel length-width ratio and the flow Mach number as well as the dimensionless aerodynamic time s. Since only four values of M were studied, it was found worthwhile to compute $H_{i j}$ and $I{ }_{i j}$ beforehand as well (distinct sets of values for each of $M=1.1,1.2,1.3$, and 1.4). They also were stored on magnetic tape.
3) Numerical integration of the panel equations of motion. This operation uses as inputs the data stored from steps 1) and 2) above,
as well as specification of $\lambda^{*}, \mu, \quad M, \Delta p, R_{x}$, and g_{s}. Interest centers on the amplitude and frequency of the fiutter limit cycle at a given point on the panel:

$$
\begin{aligned}
w / \mathrm{h})_{p} & =\mathrm{f}\left(\lambda^{*}, \quad \mu, \mathrm{M}, \Delta \mathrm{p}, \quad \mathrm{R}_{\mathrm{x}}, \quad \mathrm{~g}_{\mathrm{s}}\right) \\
\mathrm{K} & =\mathrm{g}(
\end{aligned}
$$

(The cross-stream in-plane load R_{y} was zero in the experiments of Ref. 5. and so was assigned the same value in the present study.)

The dimensionless flow dynamic pressure $\quad \lambda^{*}$ and flow density μ are related through the flow velocity:

$$
\frac{\lambda^{*}}{\mu}=\left(\frac{\rho_{m} \mathrm{ha}^{2}}{\mathrm{D}}\right) \mathrm{U}^{2}
$$

The quantity in brackets is uniquely defined by the geometric and material specifications of the panel being studied. Furthermore, in a continuous flow wind tunnel the flow velocity U is determined by the test section Mach number M, and the stagnation temperature T_{0} in the tunnel settling chamber:

$$
\begin{aligned}
& \mathrm{U}=\left(\mathrm{RT}_{0}\right)\left(\frac{\mathrm{M}^{2} \mathrm{~T}}{\mathrm{~T}_{0}}\right) \\
& \frac{\mathrm{M}^{2} \mathrm{~T}}{\mathrm{~T}_{\mathrm{o}}}=\frac{\mathrm{M}^{2}}{1+\frac{Y-1}{2} \mathrm{M}^{2}}
\end{aligned}
$$

The stagnation temperature is held constant during tunnel operation, so U is determined solely by the test section Mach number.

It is therefore convenient to display the results of the flutter amplitude and frequency as functions of q, the (dimensional) dynamic pressure rather then as functions of both λ^{*} and μ independently:

$$
\begin{aligned}
w / h)_{p} & =F\left(q, \quad M, \Delta p, N_{x}, g_{s}\right) \\
K & =G\left(q, M, \Delta p, N_{x}, g_{s}\right)
\end{aligned}
$$

Since the non-dimensionalization of R_{x} is arbitrary, it has been replaced here by the ratio of R_{x} to its buckling value:

$$
\left.N_{x} \equiv R_{x} / R_{x}\right)_{\text {buckle }}
$$

By extrapolating to $\mathrm{w} / \mathrm{h})_{\mathrm{p}} \rightarrow 0$, it is possible to determine the critical or flutter dynamic pressure $\quad q_{f}$ and the flutter frequency K_{f} :

$$
\begin{aligned}
& q_{f} \equiv F_{1}\left(M, \Delta p, N_{x}, g_{s}\right) \\
& K_{f}=G_{1}\left(M, p, N_{x}, g_{s}\right)
\end{aligned}
$$

4) Panel stresses during flutter. In the theory of thin plates, normal stresses vary linearly across the plate thickness. The extreme values of stress occur on the upper and lower surfaces of the panel, e.g.

$$
\left.\left.\sigma_{x}=\sigma_{x}\right)_{\mathrm{ms}} \pm \sigma_{\mathrm{x}}\right)_{\mathrm{b}}
$$

where the + and - sign apply to the upper and lower surfaces, respectively. A similar equation holds for σ_{y}. The bending stress
$\left.\sigma_{x}\right)_{b}$ is proportional to the local curvature of the plate, and is obtained from the modal amplitudes a_{n} by differentiating Eq. (3) for w / h. On the other hand, the middle surface or in-plane stress σ_{x}) obstained by differentiating the Airy stress function Φ of Eq. (2). As such the in-plane stresses depend not only on the plate deflection $w(x / a, y / b, \tau)$ but also on the in-plane boundary conditions satisfied at the edges of the plate. The computer program listed in the Appendix uses the modal amplitudes $a_{n}(\tau)$ from step 3) to calculate the in-plane or middlesurface stress for a panel completely restrained at its edges. Since not many flutter calculations were made for the zero edge restraint case, an equivalent program for computing the middle surface stresses in such panels was not written.

IV. NUMERICAL RESULTS

Free Panel Vibrations

In order to explore the extent to which the theoretical model employed mirrors the elastic behavior of the panel, independently of the flutter results, panel natural frequencies were computed as a function of applied static transverse and in-plane loading. The transverse load was equivalent to a pressure differential between the two faces of the panel.

The computations were carried out by integrating the modal equations (4) (with $\lambda^{*}=\mu=0, g_{s}>0$) to determine the equilibrium panel deflection under the assumed loading, and then linearizing the equations about that deflection. The natural frequencies were determined numerically from these linearized equations by solving a classical eigenvalue problem. Representative results are shown in Figures 1 through 4, along with comparable experimental data from Ref. 5.

Figures 1 through 3 show the behavior of modes 1,2 , and 6 under a transverse pressure loading. In each case calculations were made assuming both zero and complete in-plane edge restraint. (The edges of a plate with zero in-plane restraint are free to move in the plane of the plate in response to transverse plate motions, while the edges of a plate with complete in-plane restraint are prevented from making any such movement.) In all three figures there is a systematic discrepancy at zero pressure load. Part of this difference is attributable to imperfect convergence of the solution, but probably not all. The calculated frequencies included in Ref. 5 (Table II) show a similar deviation from the experimental results. Of greater interest, however, are the amounts
by which the various frequencies increase when a pressure load is applied. For the lower modes, the assumption of complete edge restraint provides the best agreement with experiment, while for the higher modes, zero edge restraint works best.

Figure 4 shows calculated and experimental results for the behavior of the ninth mode under a compressive in-plane load. Both calculated frequencies drop off much more near the buckling load than does the experimental curve. This may be due to the presence of imperfections in the plate, such as a slight initial curvature or waviness.

It was not possible, on the basis of these results, to eliminate one in-plane boundary condition from further consideration. Therefore flutter calculations were carried out for both cases, although a shortage of time and money limited the number of zero edge restraint runs that could be carried out.

Flutter Calculations - General Nature of Solutions Obtained

The flutter limit cycle was determined by integrating the modal equations (4) until a periodic motion was found. Experience indicates that the initial conditions used to start the integration do not affect the amplitude or frequency of the limit cycle, at least for $N_{x}<1$. Because of the large length-width ratio ($a / b=4.48$) employed, at least twelve modes were required to obtain an acceptable degree of convergence. Furthermore, the transient portion of the solution survived for the equivalent of many cycles of the ultimate limit cycle motion. (Neither of these statements apply for smaller values of a / b.) As a result, the numerical integration turned out to be costly in terms of both computer memory storage area and computation time.

Initially all calculations were made without introducing any damping other than the aerodynamic damping implicit in the potential flow expression (10) for the generalized forces $Q_{j i}$. However, it was found that for larger values of the dynamic pressure q the flutter frequency became very high ($\sim 900 \mathrm{~Hz}$), with the panel deflection being such that the 9 th or 10 th mode had the largest amplitude. Curningham ${ }^{8}$ has shown that the flutter frequency and mode shape are both critically sensitive to the amount of structural damping present. Therefore, structural damping was introduced into the panel equations of motion (4) in order to suppress the high frequency flutter.

The structural damping present in the actual panels used in Ref. 5 has not been measured to date. Moreover, if the lower flutter frequency found experimentally is indeed due to the presence of additional damping, the source of that damping need not be structural. It may well be caused by the boundary layer in the airflow over the panel. The capability for dealing with boundary layer effects does exist, ${ }^{9}$ but at least for the present the technique is not practical for flutter calculations involving the use of many structural modes. Hence the introduction of structural damping must be viewed as an essentially ad hoc procedure designed to eliminate a physically unrealistic aspect of the flutter behavior.

From a mathematical standpoint, there are many forms of structural damping that can be introduced into the plate equations to describe non-elastic behavior. Of these the traditional and most popular choice is the (1 + ig) type, which is meaningless for non-sinuousoidal motion and is therefore unsuitable for nonlinear plate equations. The most common of the many types that can be used have the general form

$$
G_{s} \nabla^{2 n} \quad \frac{\partial w}{\partial t}
$$

$$
\text { with } n=0,1,2, \ldots
$$

They differ, in the modal formulation used here, in the relative damping ratios given the various modes. Roughly speaking, the damping ratios increase as the mode number raised to the $(n-1) s t$ power. For the present work, $n=2$ was selected because $G_{s} \nabla^{4} \frac{\partial W}{\partial t}$ fits easily into the modal equations (4), and because it provides greater damping in the higher modes whose motion it is intended to suppress.

Most of the results that follow have been calculated with $\mathrm{g}_{\mathrm{s}}=.0001$. This provides a damping ratio for the first mode of .025 (2.5% of critical). Cost limitations have made it impossible to present a systematic study of the influence of structural damping over the complete range of Mach number, static pressure differential, and applied in-plane load considered here.

Flutter Boundaries

Figures 5 and 6 show flutter boundaries as a function of Mach number for an umloaded panel $\left(\Delta p=N_{x}=0\right)$. Curves are shown for $g_{s}=0$. and $\mathbf{g}_{\mathbf{s}}=.0001$. On the same figures are shown experimental data from Ref. 5. The data were obtained from several different panels (of indentical specification), and for two different boundary layer thicknesses, the thicker one being induced by inserting spring pins in the tunnel wall ahead of the panel, which was mounted flush to the wall. This caused the boundary layer thickness (as measured near the trailing edge of the pane1) to increase roughly 7 to 30%, depending on the tunnel Mach number and dynamic pressure. ${ }^{5}$

Both the theoretical and experimental results show a gradual decrease in flutter dynamic pressure with increasing Mach number, but the theory shows no minimum at $M=1.3$. The theoretical flutter boundary for $g_{s}=0$. agrees best with the experimental results for the smooth wall boundary layer (Figure 5) while the damped flutter boundary agrees best with the results for the rough wall boundary layer (Figure 6). This is the correct qualitative behavior, since the boundary layer introduces a damping effect that increases with boundary layer thickness. The quantitative agreement in Figure 6 is of course fortuitous, since the amount of structural damping introduced is arbitrary, and in any event the damping is of structural origin in the theory and aerodynamic in the experiment.

Flutter frequencies are shown in Fig. 7. As mentioned previously, the frequencies for zero damping are unrealistically high, whereas those for $g_{s}=.0001$ are comparable to the experimental results. Neither theory nor experiment shows much variation with Mach number.

Figures 8 and 9 show calculated and experimental flutter boundaries for plates exposed to compressive in-plane loads. In both figures the qualitative behavior with N_{x} is correct, although the rate of decrease in the flutter dynamic pressure is more rapid according to the theory. Near buckling ($N_{x}=1.0$), the theoretical result becomes overly conservative. The calculations of flutter boundaries near the bucking load is a difficult matter, since the plate behavior is then especially sensitive to the presence of small initial structural imperfections, to the damping effect of the boundary layer, and so on. The prediction of panel natural frequencies under in -plane loading suffers the same difficulty, as can be recalled from Fig. 4.

Figure 10 shows a limited set of calculations for a panel exposed to a static pressure differential. Both sets of in-plane boundary conditions (zero and complete edge restraint) are included. The line labeled "Exp." is a derived curve taken from Fig. 43 of Ref. 5. The result for zero in-plane restraint shows the better agreement with experiment, in spite of the fact that the panels referred to in Ref. 5 were carefully mounted in a massive supporting structure. This result is consistent with similar comparisons made previously involving panels of smaller length-width ratio at higher Mach numbers. ${ }^{3,10}$

Figs. 11, 12, and 13 contain flutter boundaries for panels exposed to combined loading (both $\Delta p \neq 0$. and $N_{x} \neq 0$.). The theoretical results are all for the case of complete edge restraint, and reflect the same behavior as exhibited in Fig. 10, namely, a lack of sensitivity to static pressure differential. Note; however, that the agreement between the slopes of corresponding pairs of flutter boundaries in Fig. 11 improves as the in-p1ane loading increases.

It would be desirable to carry out calculations equivalent to those shown in Figs. 11-13 for the zero in-plane restraint case.

Panel Displacement in Flutter

A record of panel centerline deflection during approximately one period of the flutter oscillation is shown in Fig. 14. Structural damping ($\mathrm{g}_{\mathrm{s}}=.0001$) was assumed in making the calculation; with no damping, many more zero crossings appear than are shown. The motion portrayed in Fig. 14 is qualitatively similar to that reported in Ref. 5. (See especially Fig. 57 of that report). In particular, the panel deflection is largest near the trailing edge, but not markedly so, and the streamwise variation of the
deflection is elaborate, but with relatively few zero crossings at any given instant. The motion has a quasi wave-like character, since the zero crossings (points of zero deflection) move with time, and even appear and disappear.

Relatively little panel displacement data was published in Ref. 5, and what was presented was limited to a case wherein the panel was buckled by the applied in-plane load. This situation is both the most important physically (since at a given dynamic pressure the panel deflection is maximized), and the most difficult to handle analytically. As mentioned previously, buckled panels are especially sensitive to effects that normally are either ignored entirely (such as initial imperfections), or handled very crudely (structural damping).

Panel displacements at three different streamwise locations (but 2.5 inches off the centerline) are shown in Fig. 15. The streanwise locations of probes A, C, and F are shown in Fig. 14. At all three locations, the calculated displacements are considerably larger than their experimental counterparts.

Stresses

The bending stresses are generally considerably larger than the in-plane or axial stresses during flutter. Since the bending stresses are proportional to local panel curvature, the bending stress distribution generally resembles the panel deflection (see Fig. 16). Attempts to compute stresses at a given point on the panel are therefore hampered by the same difficulty encountered in calculating deflections: a small change in the flutter mode shape causes large errors in the stresses computed at that point.

Fig. 17 shows a comparison of calculated and experimental stresses as a function of flow dynamic pressure for a buckled panel. The open circles are the peak-to-peak bending stress in panel \#6 at the location of gauge Bl, just off the center line of the panel near its trailing edge. The small triangles connected by straight lines are theoretical peak-to-peak stresses calculated for the same point, as well as for a point on the panel center-1ine, three quarters of the way back behind the leading edge. This latter location is the point where the maximum stress occurred, according to the theory. It should be noted that the applied in-plane load assumed for the calculations was on1y 73.5% of the theoretical buckling load, whereas the experiment was carried out with an in-plane load equal to 96% of the buckling load applied. As can be seen, the bending stress computed at the $3 / 4$ chord point agrees better with the experimental result than does the value computed at the position of gauge B1. If the stress measured at B1 is in fact the maximum stress that occurred, then the maximum stress is computed with greater accuracy than is the stress at Bl.

Figs. 18 through 21 (each of which is divided into two parts) show similar comparisons. In each figure part (a) shows theoretical and experimental bending stresses (Figs. 18 and 19) or axial stresses (Figs. 20 and 21) at the point referred to above. In part (b) the calculated data is the theoretical maximum stress on the panel, displayed alongside the same experimental data as in part (a). In general, the maximum stress (which is less sensitive to changes in the flutter mode shape) best reflects the experimental trends, at least for small N_{x}. Near the buckling load, excessively large maximum stresses are predicted, presumably for the same reasons mentioned earlier.

v. CONCLUSIONS

Flutter boundaries were computed numerically as functions of Mach number, in-plane loading, and static pressure differential. Comparison with experimental data indicate reasonably good correlation for Mach number and in-plane loading, except near the buckling load. The influence of static pressure differential depends on the in-plane boundary conditions assumed. Assuming zero restraint (edges free to move in plane) provided the best correlation with experiment, although not enough calculations were made to firmly establish this point.

The flutter mode shapes calculated were in good qualitative agreement with experiment. The flutter frequency, however, proved to be sensitive to the amount of structural damping assumed. With no damping, the coupled flutter frequency was several times higher than the experimental value. Because flutter frequency is an important factor in determining panel fatigue life, future experimental programs should include a determination of panel damping. In addition, the theoretical model employed should be improved to include the damping effect of the boundary layer.

Attempts to compute panel deflection and stresses during flutter met with limited success, particularly for buckled panels. There is some indication, however, that maximum deflections and stresses can be calculated with greater accuracy than deflections on stresses at a specific point. From a practical standpoint, knowledge of the maximum is sufficient to determine panel fatigue life; the stress distribution and mode shape are of lesser significance.

Most of the difficulties encountered in this investigation stem from the large length-width ratio of the panel and the presence of
large in-plane loads. In this regard a wind tunnel test program using a carefully constructed high aspect ratio ($a / b<1$) panel would be very helpful. Stream-wise buckling loads might well be included in the test program, but an extensive set of data should also be collected with little or no in-plane loading present. Such data would be of great help in assessing current theoretical methods without the perplexing but not fundamental difficulties associated with low aspect ratio and panel buckling.

REFERENCES

1. Dowell, E. H., "Nonlinear Oscillations of a Fluttering Plate," AIAA Journa1, Vo1. 4, No. 7, July 1966, pp. 1267-1275.
2. Dowell, E. H., "Nonlinear Oscillations of a Fluttering P1ate II," AIAA Journal, Vol. 5, No. 10, 1967, pp, 1856-1862.
3. Ventres, C. S. and Dowel1, E. H., "Comparison of Theory and Experiment for Nonlinear Flutter of Loaded Plates," AIAA Journal, Vol. 8, No. 11, 1970, pp. 2022-2030.
4. Ventres, C. S., "Nonlinear Flutter of Clamped Plates," Ph.D. thesis, Department of Aerospace and Mechanical Sciences, Princeton University, 1969.
5. Kappus, H. P., Lemley, C. E. and Zimmerman, N. H., "An Experimental Investigation of High Amplitude Pane1 Flutter," NASA CR-1837, May 1971.
6. Bolotin, V. V., "Nonconservative Problems of the Theory of Elastic Stability," (The MacMi11an Co., New York, 1963) pp. 274-312.
7. Dowe11, E. H., "Generalized Aerodynamic Forces on a Flexible Plate Undergoing Transient Motion," Quarterly of Applied Mathematics, Vol. 24, No. 4, 1967, pp. 331-338.
8. Cunningham, H. J., "Flutter Analysis of F1at Rectangular Panels Based on Three-Dimensional Supersonic Unsteady Potential Flow," TR R-256, 1967, NASA.
9. Dowell, E. H., "Generalized Aerodynamic Forces on a Flexible P1ate Undergoing Transient Motion in a Shear Flow with an Application to Panel Flutter," AIAA Journal, Vo1. 9, No. 5, May 1971, pp. 834-841.
10. Ventres, C. S., "Flutter of a Buckled Plate Exposed to a Static Pressure Differentia1," AIAA Journal, Vol. 9, No. 5, May 1971, pp. 958-960.

LIST OF FIGURES

Figure 1 Effect of $\Delta \mathrm{p}$ on Frequency Spectra lst Mode
Figure 2 Effect of $\Delta \mathrm{p}$ on Frequency Spectra 2nd Mode
Figure 3 Effect of Δ p on Frequency Spectra 6th Mode
Figure 4 Frequency of Ninth Mode vs In-P1ane Load
Figure $5 \quad$ Variation of Onset Dynamic Pressure with Mach Number
Figure 6
Figure 7
Figure 8

Figure 9

Figure 10

Figure 11

Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Panel Bending Stress and Displacement
Figure 17 Oscillatory Bending Stress of a Buckled Panel During Flutter
Figure 18a Oscillatory Bending Stress During Flutter
Figure 18b Maximum Bending Stress During Flutter
Figure 19a Oscillatory Bending Stress During Flutter
Figure 19b Maximum Bending Stress During F1utter
Figure 20a Oscillatory Axial Stress During Flutter
Figure 20b Maximum Axial Stress During Flutter
Figure 2la Oscillatory Axial Stress During Flutter
Figure 21b Maximum Axial Stress During F1utter

EFFECT OF Δp ON FREQUENCY SPECTRA $2^{\text {nd }}$ MODE

FIGURE 3

FREQUENCY OF NINTH MODE

 vs IN-PLANE LOAD

VARIATION OF ONSET DYNAMIC PRESSURE WITH MACH NUMBER

VARIATION OF ONSET DYNAMIC PRESSURE WITH MACH NUMBER

FIGURE 6

EFFECT OF DAMPING ON FLUTTER ONSET FREQUENCIES

FIGURE 7

VARIATION OF FLUTTER ONSET DYNAMIC PRESSURE
WITH COMPRESSIVE EDGE LOAD

FIGURE 8

VARIATION OF FLUTTER ONSET DYNAMIC PRESSURE WITH COMPRESSIVE EDGE LOAD

EFFECT OF Δp ON FLUTTER ONSET DYNAMIC PRESSURE (DIFFERENT BOUNDARY CONDITIONS)

EFFECT OF $\triangle \mathrm{p}$ ON FLUTTER ONSET DYNAMIC PRESSURE (WITH VARIATION IN NX)

EFFECT OF N_{x} ON FLUTTER ONSET DYNAMIC PRESSURE

FIGURE 12

PANEL DISPLACEMENT

$$
t_{1}=0.1920
$$

$$
t_{2}=0.1940
$$

$t_{3}=0.1960$

$$
t_{4}=0.1900
$$

$t_{5}=0.2000=t_{0}+$ PER 100

PANEL MOTION DURING FLUTTER

PANEL OSCILLATORY DISPLACEMENT DURING FLUTTER

PANEL BENDING STRESS AND DISPLACEMENT

OSCILLATORY BENDING STRESS OF A BUCKLED PANEL DURING FLUTTER

OSCILLATORY BENDING STRESS DURING FLUTTER

FIGURE 18 a

MAXIMUM BENDING STRESS DURING FLUTTER

FIGURE 18 b

OSCILLATORY BENDING STRESS DURING FLUTTER

FIGURE 19a

MAXIMUM BENDING STRESS DURING FLUTTER

FIOURE 19D

OSCILLATORY AXIAL STRESS DURING FLUTTER

Figure 20a

MAXIMUM AXIAL STRESS DURING FLUTTER

FIGURE 20b

OSCILLATORY AXIAL STRESS DURING FLUTTER
figure 2la

MAXIMUM AXIAL STRESS DURING FLUTTER

FIGURE 21b

APPENDIX

Listing of Computer Programs

ISN 0002
ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009

ISN 0010

ISN 0011
ISN 0012
ISN 0013
ISN 0014
ISN 0015
ISN 0016
ISN 0017
ISN 0018
ISN 0019
ISN 0020
ISN 0021
ISN 0022
ISN 0023
ISN 0024
ISN 0025
ISN 0026
ISN 0027
ISN 0028
ISN 0029
ISN 0030
ISN 0031
ISN 0032
ISN 0033
ISN 00.34
ISN 0035
ISN 0036
ISN 0037
ISN 0038
ISN 0039
ISN 0040
ISN 0041
ISN 0042
ISN 0043
ISN 0044
ISN 0045
ISN 0046

```
COMPILER OPTIONS - NAME= YAIN,OPT=02.LINECNT=58,SIZE=0000K, SOURCE, EBCDIC, NOLIST, NODECK, LOAD, MAP, NOEDIT, ID, NOXREF
                    GOURCE,EBCDIC,NOLIST,NODECK, LOAD,MAP,NOEDIT,ID,NOXREF
    C PROGRAM TO COMPUTE NONLINEAR TERMS (COUPLING BETGEEN
    C IN-PLANA STRETGIING AND OUT OF PLANE BENDING) FOR CLAMPED
    RLATE WITH CCHPLSTR IN-PLANE EDGE RESTRAINT
    AB=PLATE WRNGTH/WIDTH RATIO,NO=POISSON'S RATIO
    NV = # OF MOCES
    REAL NU
    REAL II
    DIMENSION B (12,12,12,12)
    DNA (K) = (FLOAT (K)**2+16.*AB2)**2
    DNB(K) = (FLGAT (K)**2+4.*AE2)**2
    CSS (K,L,M) = . J* (CC(K,L-M)-CC(K,L+M))
    CCC (K,L,M) = j* (CC (K,L,M) + CC (K,L+M))
    GG(K,L,M)=\operatorname{CCC}(K-1,L-1,M)-\operatorname{CCC}(K-1,L+1,M)-CCC(K+1,L-1,N)
1 +CCC(K+1,L+1,M)
    HH (K,L,H) = - PL )* PLOA[(L-1)**2*(CCC (K-1,L-1,M)
    - - CCC (K+1, [- -1, Mi))
    2 + PI2*FLOAT (L+1)**2*(CCC (K-1,L+1,M)-\operatorname{CCC}(K+1,L+1,M))
    II (K,L,M)=-PI*RLOAT (L, - 1)*(CSS (K-1,L-1,M)-CSS (K+1,L-1,M))
    1 + PI*FLOAT (L+1)* (CSS (K-1,L+1,M)-CSS (K+1,L+1,M))
    FORMAT (1:10)
    PORMAT (141)
    PI = 3.14159
    PI2 = PI*PI
    PI3 = PI2*EI
    PI4 = PI3*PI
    READ (5.110) AB,NU
110 FORMAT (4E 10.3)
    WRITE(6,1101) AB,NU
    FORMAT(2E12.3)
    WRITE (6,1)
    READ (5,123) NV
    WRITE(5;120) NV
    FORMAT (I5)
    WRITE (6,1)
    AB2 = AB**2
    AB4 = AB**4
    X = 1.OE-12
    DO 42 y = 1,NV
    DO }42\textrm{N}=1,N
    MA=M-N
    MB=M-N-2
    MC=M-N+2
    MD = M+N
    ME = M+N-2
    MP=M+N+2
    RM=M
    RN=N
    RMA = MA
    RMB = MB
    RMC = MC
    RMD = MD
    RME = ME
    RMP = MF
    BA = -2.*(RM*RMD+2.)/ONA(MA)
```

ISN 0047
ISN 0048
ISN 0049
ISN 0050
ISN 0051
ISN 0052
ISN 0053
ISN 0054
ISN 0055
ISN 0056
ISN 0057
ISN 0058
ISN 0059
ISN 0060
ISN 0061
ISN 0062
ISN 0063
ISN 0064
ISN 0065
ISN 0066
ISN 0067
ISN 0069

ISN 0070
ISN 0071

ISN 0072
ISN 0073

ISN 0074
ISN 0075
ISN 0076
ISN 0077
ISN 0078

ISN 0079
ISN 0080
ISN 0081
ISN 0082
ISN 0083
ISN 0084
ISN 0085
ISN 0086
ISN 0087

```
    BB = (RM-1.)*RMJ/DNA(MB)
    BC = (RM+1.)*R{)/DNA(MC)
    BD = 2.*(AM*RMA+2.)/LNA(MD)
    BE = - (RM-1.)*{IA/DNA{ME}
    BF=-(BM+1.)*R.MA/DNA(1F)
    BG = 4.* (am**2+1.)/0NO(MA)
    BH=-2.* (RM-1.) **2/DNB(MB)
    BK = -2.*(RM+1.)**2/DNB(MC)
    BL = -4.* (RM** 2+1.)/DNB (MD)
    BM = 2.*(\alphaM-1.)**2/DNB (ME)
    BN = 2.*(RM+1.)**2/DNB(AF)
    BP = -2.*RM/(R1A**3+X)
    BQ = (BM-1.)/(8.13**3+X)
    BR = (R:1+1.)/(R1C**3+X)
    BS = 2.*RY/RND**3
    BT = - (3M-1.)/(RME**3+X)
    BU = -(NM+1.)/RMF**3
    DO 42 I = 1.NV
    DO 42 K = I,NV
    IODD = L+K+M+N
    IF(MOD(IODD,2).NE.0) GO TO 38
    BAA = (BA-BG)*Hif(I,K,MA) + (BB-BH)*HH(I,K,MB) +
1 (BC-BK)*H{(I,K,MC) + (BD-BL)*HH(I,K,MD)
2 (BE-BM)*IH(I,K,MS) + (BF-BN)*HH(I,K,MF)
    BAA = -43.*(1.-NU**2)*AB2*PI2*EAA
    BBB = RMA* (EA-3;)*IL(I,K,MA) + RMB* (BB-BH)*II (I,K,MB)
1 + RMC* (BC-BK)*II(I,K,MC) + RMD* (BD-BL)*II (I,K,MD)
2 RME* (BE-Bid)*II(I,K,GE) + RMF*(BF-BN)*II(I,K,MP)
    BBB = -24.*(1.-N0**2) *AB2*PI 3*BBB
    BCC = RMA**2*(BA-2.*B'; 2.*BP)*GG(I,K,MA)
1 + RMB**2*(BB-2.*isH+2.*BQ)*GG (I,K,MB)
3 + RMC**2*(BC-2.*BK+2.*BR)*GG (I,K,MC)
4 + RMD**2*(BJ-2.*3L+2.*BS)*GG(I,K,MD)
5 + RME**2*(BS-2.*BM+2.*BT)*GG(I,K,ME)
6 + RMF**2*(BF-2**BN+2.*BU)*GG(I,K,MF)
BCC = 12.*(1.-NU**2)*AB2*PI4*BCC
B(I,K,M,N)=-A32*(BAA-2.*EEB+BCC)
GO TO 42
B(I,K,M,N) = 0.
B(K,I,M,N)=B (I,K,M,N)
WRITE NONLINEAT TERMS ONTO TAPE
HRITE(1J) B
ENDFILE 1J
DO 45 I = 1.NV
DO 45 J = 1.NV
DO 45 K = 1.NV
WRITE (0,47) (3(I,J,K,L), L = 1,NV)
PORMAT (10212.3)
STOP
END
```

```
LEVEL 21.6 (MAY 72)
    COMPILER OPTIONS - NAME= MAIN,OPT=02,LINECNT=58,SIZE=0000K,
                                    SOUHCE,Z3CDIC, NOLIST, NODECK, LOAD,MAP, NOEDIT,ID, NOXREF
```

ISN 0002
ISN 0003
ISN 0004
ISN 0006
ISN 0008
ISN 0009
COMPILER OPTIONS - NAME = MAIN,OP[=02,LINECNT=58, SIZE=0000K,
SOURCE, Z3CDIC, NOLIST, NODECK, LOAD, MAP, NOEDIT, ID, NOXREF FUNCTION CC (K, M)
$C C=0$.
IF (K.EQ.M) $C C=C C+.5$
$\operatorname{IF}\left(K . Q_{0}-\mathrm{A}\right) \mathrm{CC}=\mathrm{CC}+5$
RETORN
END

```

C PROGRAM TO こUMPUPS NONLINEAR TERMS（COUPLING
C BFTWEEN IN－PLANE JTRETEHING AND OUT OF PLANE BENDING）
C FOR PLATES WITH ZERO IN－PLANE FDGE RESTRAINT

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014

0015

0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
\(A B=P L A T E\) LENGTH／aIDTH RATIO，NU＝POISSON＇S RATIO，
NV＝\＃OF MODeS
REAL NU
DIMENSION \(3(12,12,12,12)\)
DIMENSION AA \((30,3,30,3), V(14,30,3,14), G(30,3,14,14)\)
DIMENSION AM \((90,90)\) ，AMW \((90,90)\)
DIMENSION AVW（ 180 ）
REAL＊ 8 AM，AAN
REAL＊8 AVH
\(\operatorname{CSS}(K, L, M)=.5 *(こ C(K, L-M)-C C(K, L+M))\)
\(\operatorname{CCC}(K, L, M)=.5 *(こ C(K, L-M)+C C(K, L+M))\)
\(F(I, J)=C C(I, J)\)
\(P(N, L)=F(N-1, L-1)-P(N-1, L+1)-F(N+1, L-1)+F(N+1, L+1\}\)
\(\operatorname{PFF}(K, M)=-\operatorname{FLCAP}(M-1) * * 2 *(F(M-1, K-1)-F(M-1, K+1))\)
\(1+\operatorname{PLOAT}(M+1) * * 2 *(2(M+1, K-1)-F(M+1, K+1))\)
\(\operatorname{FFFP}(K, M)=\operatorname{FLOAP}(M-1) * * 4 *(F(M-1, K-1)-P(M-1, K+1))-\)
1 FLOAT \((M+1) * * 4 *(P(1+1, K-1)-F(M+1, K+1))\)
\(\operatorname{GCCA}(\mathrm{L}, \mathrm{I}, \mathrm{J})=. \mathrm{J}^{*}(\operatorname{PLOAT}(\mathrm{I}-1) *(\mathrm{~J}-1)) *(\mathrm{~F}(\mathrm{I}-\mathrm{J}, \mathrm{L}-1)\)
\(1-F(I-J, L+1)-F(I+J-L, L-1)+P(I+J-2, L+1))\)
\(2-\operatorname{PLOAT}((I-1) *(J+1)) *(P(I-J-2, L-1)-r(I-J-2, L+1)\)
\(3-F(I+J, L-1)+F([+J, L+1))-F L O A T((I+1) *(J-1)) *(F(I-J+2, L-1)\)
\(4-F(I-J+2, L+1)-P(I+J, L-1)+F(I+J, L+1))+\operatorname{FLOAT}((I+1) *(J+1))\)
\(5 *(F(I-J, L-1)-F(I-J, L+1)-F(I+J+2, L-1)+F(I+J+2, L+1)))\)
\(\operatorname{GCEB}(L, J, I)=-.5 *(P L J A T(I-1) * * 2 *(F(I+J-2, L-1)-F(I+J-2, L+1)\)
\(1+F(I-J, L-1)-F(I-J, L+1)-F(I+J, L-1)+P(I+J, L+1)\)
\(2-\mathrm{F}(\mathrm{I}-\mathrm{J}-2, \mathrm{~L}-1)+\mathrm{E}(\mathrm{I}-\mathrm{J}-2, \mathrm{~L}+1))-\mathrm{FLOAT}(\mathrm{I}+1) * * 2\)＊
\(3(F(I+J, L-1)-F([+J, L+1)+F(I-J+2, L-1)-F(I-I+2, L+1)\)
\(4-F(I+J+2, L-1)+?(I+J+2, L+1)-F(I-J, L-1)+F(I-J, L+1)))\)
\(P I=3.14159\)
PI2 \(2=\mathrm{PI} * \mathrm{PI}\)
PI \(3=P I 2 * P I\)
PI \(4=\) PI \(3 *\) PI
\(\operatorname{READ}(5,110)\) AB．NJ
110 FORMAT（4E10．3）
WRITE \((6,1101)\) AB，NU
FORMAT（1HO，1P4E1J．3）
WRITE \((6,1)\)
\(\operatorname{READ}(5,120)\) VV
WRITE（6．120）NV
FORMAT（I5）
WRITE（6．1）
FORMAT（1HO）
FORMAT（1H1）
\(A B 2=A B * * 2\)
\(A B 4=A B * * 4\)
־ COMPUTEB
\(\mathrm{NY}=2 * \mathrm{NV}+2\)
\(\mathrm{NY}=3\)
DO \(10 \mathrm{~K}=1, N \mathrm{~K}\)
DO \(10 \mathrm{I}=1, \mathrm{NY}\)
\(L=2 * I-1\)
DO \(10 \mathrm{M}=1 . \mathrm{VX}\)
Do \(10 \mathrm{~J}=1, \mathrm{NY}\)

0040
0041
0042

0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069 0070
0071
0072 0073

0074
0075
0076
0077
0078
0079 0080

0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
```

 \(N=2 * J-1\)
 \(A A(K, I, M, J)=F F F E(K, H) * F F(L, N)+2, * A B 2 * F F F(K, M) * F F F(L, N)\)
    ```
    \(1+A B 4 * \operatorname{PF}(K, M) * \operatorname{FPPP}(I, N)\)
    CONTINUE
    INVFRT AA AND ST:JRE IN AA
    \(N A M=N X * N Y\)
    \(I=0\)
    \(J=0\)
    DO \(512 \mathrm{~K}=1, \mathrm{NX}\)
    DO \(512 \mathrm{~L}=1, \mathrm{NY}\)
    \(I=I+1\)
    DO \(508 \mathrm{M}=1, \mathrm{NX}\)
    DO \(508 \mathrm{~N}=1, \mathrm{NY}\)
    \(J=J+1\)
508
512
511
    10
\(c\)
    \(A M(I, J)=A A(K, L, B, N)\)
    \(\mathrm{J}=0\)
    CALL MATIN \(2(A M, N A 1,90, A M W, 90, A V W, K I N V, 180)\)
    WRITE \((6,1)\)
    WRITE \((6,511)\) KINV
    FORMAT (I10)
    \(I=0\)
    \(J=0\)
    DO \(522 \mathrm{~K}=1 . \mathrm{NX}\)
    DO \(522 \mathrm{~L}=1, \mathrm{NY}\)
    \(\mathrm{I}=\mathrm{I}+1\)
    DO \(518 \mathrm{M}=1, \mathrm{NX}\)
    DO \(518 \mathrm{~N}=1 . \mathrm{NY}\)
    \(J=J+1\)
    \(A A(K, L, M, N)=A M(I, J)\)
    \(\mathrm{J}=0\)
    DO \(14 \mathrm{I}=1, \mathrm{NV}\)
    DO \(14 \mathrm{~K}=1, N X\)
    DO \(14 \mathrm{~J}=1, \mathrm{NY}\)
    \(L=2 * t-1\)
    DO \(14 \mathrm{M}=1, \mathrm{NV}\)
    \(V(I, K, J, M)=A B 2 *(G \operatorname{ACB}(I, K, N) * \operatorname{GCCB}(1,1, L)-2 . * G C C A(I, K, M)\)
        \(1 * G C C A(1, L, 1)+G \operatorname{CB}(5,1, K) * \operatorname{GCCB}(1, L, 1)) * \operatorname{PI} 4\)
        CONTINUE
        DO \(16 \mathrm{~K}=1\), NX
        DO \(16 \mathrm{~J}=1, \mathrm{NY}\)
        \(\mathrm{L}=2 * \mathrm{~J}-1\)
        DO \(16 \mathrm{M}=1, \mathrm{NV}\)
        DO \(16 \mathrm{~N}=1, \mathrm{NV}\)
        \(G(K, J, M, N)=12 . *(1 .-N U * * 2) * A B 2 *(G こ C A(K, M, N) * \operatorname{CCCA}(L, 1,1)\)
        \(1-\operatorname{GCCB}(K, N, M) * G こ こ う(L, 1,1))\)
            CONTINUE
            DO \(22 \mathrm{I}=1, \mathrm{NV}\)
            DO \(22 \mathrm{~L}=\mathrm{I}, \mathrm{NV}\)
            IVSUM \(=I+L\)
            DO \(22 \mathrm{~J}=1 . \mathrm{NV}\)
            DO \(22 \mathrm{~K}=1, \mathrm{NV}\)
            IGSUM \(=J+K\)
            \(B(I, J, K, L)=0\).
            \(I S=I+J+K+L\)
            \(M=I S-2 *(I S / 2)\)
            IF (M.NE.O) \(O U T J<1\)
```

 IVS = IVSUM-2*(IVSUM/2)+1
    ```
    DO 18 IM = LVS, NX, 2
    IGS \(=\mathrm{IGSUM}-2 *(\operatorname{IGSUM} / 2)+1\)
    DO \(18 \mathrm{KK}=\mathrm{IGS}, \mathrm{NX}, 2\)
    DO \(18 \mathrm{JJ}=1\),NY
    DO \(18 \mathrm{LL}=1, \mathrm{NY}\)
    \(B(I, J, K, L)=B(I, J, K, L)+V(I, I M, J J, L) * A A(I M, J J, K K, L L)\)
    1 * (G (KK,L.L, J, K)
    \(B(I, J, K, L)=-B(I, J, K, L)\)
    CONTINUE
    \(B(L, J, K, I)=B(I, J, K, L)\)
    CONTINUE
    WRITE NJNLINAAR TARMS ONTO TAPE
        WRITE(10) B
        ENDFILE 10
        WRITF \((6,2)\)
        DO \(45 \mathrm{I}=1, \mathrm{NV}\)
        Do \(45 \mathrm{~J}=1\). NV
        DO \(45 \mathrm{~K}=1\), NV
        MRITE \((6.47)(B(I, J, K, L), L=1, N V)\)
        FORMAT (10E12.4)
        Stop
        END

0001
0002
0003
0004
0005
0006

FUNCTION CC（K，M）
\(C=0\) ．
IF（K．EQ．M）\(\therefore=\therefore=2+.5\)
IF（K．EQ．－M）ここ＝＝こ＋．5
RTTURN．
END

0001 SUBROUTINE MATIN2（A，N1，IA，X，IX，B，INT，N2）
C THIS SUBROUTINE INVERTS THE UPPER LEFT N1 BY N1 CORNER OF MATRIX A，WHİH WAICH IAS AN ACTUAL FIRST DIMENSION OF IA． \(X\) AND B ARE OOUBLZ PHE心ISION MATRICES NEEDED FOR GORKING SPACE－X MUST BE A JOJBLY DIMENSICNED MATRIX WITH FIRST DIMENSION IX，B IS SINGLY DIMENSIONED AND SHOULD BE OF LENGTH AT LEAST 2＊N1．INT IS AN INTEGER VARIABLE WHICH IS RETURNED \＆QUAL rO 「WO If THE MATRIX IS TOO ILL CONDITIONEU rO BE INVERTED MODIFIED JOKDAN ELIMINATION DOUBLE PRECISION B（N2），X（IX，N1），PIVOT，TEMP，DABS DIMENSION A（IA，N1）
INT＝1
\(\mathrm{N}=\mathrm{N} 1\)
DO \(15 \mathrm{I}=1\) ，N
DO \(15 \mathrm{~J}=1, \mathrm{~N}\)
\(15 \quad X(I, J)=A(I, J)\)
DO \(9 K=1\) ，N
C FIND THE PLVOT
0010
PIVOT＝0．
DO \(1 \mathrm{I}=\mathrm{K}, \mathrm{N}\)
DO \(1 \mathrm{~J}=\mathrm{K}, \mathrm{N}\)
IF（DABS（X（I，J））．LE．DABS（PIYOT））GOTO 1
PIVOT＝X（I，J）
\(A(1, K)=I\)
\(A(2, K)=J\)
こONTINUE
IF（K．EQ．1）CCMP＝DA3S（PIVOT）
IF（ \(K\) ．EQ．1．ANJ．COY2．LE．1．E－30）．OR．
1 DABS（PIVOT）．LE．1．JE－OY＊こOMP）GO TO 14
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042

\section*{EXCHANGE ROW J}
\(L=A(1, K)+1 . E-6\)
IF（L．EQ．K）GO TO 3
DO \(2 \mathrm{~J}=1\) ，N
TEMP \(=X(L, J)\)
\(X(L, J)=X(K, J)\)
\(X(K, J)=T E M P\)
ExCHANGE CULUMNS
\(\mathrm{L}=\mathrm{A}(2, \mathrm{~K})+1\) ． \(\mathrm{E}-6\)
IF（L．EQ．K）GOTO5
DO \(4 I=1, N\)
TEMP＝X（I，L）
\(X(I, L)=X(I, K)\)
\(X(I, K)=T E M P\)
JORDAN STEP
DO \(8 \mathrm{~J}=1\) ， N
\(\mathrm{J} 2=\mathrm{N}+\mathrm{J}\)
\(B(J)=1 . D 0 / \mathrm{LIVOT}\)
IF（J．NE．K）GU TO 6
\(\mathrm{B}(\mathrm{J} 2)=1.00\)
GO TO 7
\(6 \quad B(J)=-X(K, J) * B(J)\)
\(\mathrm{B}(\mathrm{J} 2)=\mathrm{X}(\mathrm{J}, \mathrm{K})\)
\(\mathrm{X}(\mathrm{K}, \mathrm{I})=0\) ．
\(\begin{array}{ll}7 & X(X, J)=0 \\ 8 & X(J, K)=0\end{array}\)
DO \(9 I=1, N\)

0043 0044 0045

0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067
\(\mathrm{I} 2=\mathrm{N}+\mathrm{I}\)
DO \(9 \quad J=1, N\)
\(X(I, J)=X(I, J)+B(I 2) * B(J)\)
REORDER.FINAL MATRIX
DO \(13 \mathrm{~L}=1\), N
\(K=N+1-L\)
\(J=A(1, K)+1 . E-6\)
IF (J.EQ.K) GO TO 11
DO \(10 \quad I=1, N\)
TEMP \(=\mathrm{Y}(\mathrm{I}, \mathrm{J})\)
\(X(I, J)=X(I, K)\)
\(10 \quad X(I, K)=\) TEMP
\(11 \quad I=A(2, K)+1 . E-6\)
IF(I.EQ.K) GO TO 13
DO \(12 \mathrm{~J}=1\), N
\(\operatorname{TEMP}=\mathrm{X}(\mathrm{I}, \mathrm{J})\)
\(X(I, J)=X(K, J)\)
\(X(\mathrm{~K}, \mathrm{~J})=\mathrm{TEMP}\)
continue
DO \(25 \quad I=1, N\)
DO \(25 \mathrm{~J}=1 \mathrm{~N}\)
25 A \((I, J)=X(I, J)\) RETURN
14 INT=2
RETURN
EVD
```

COMPILER OPTIONS - NAME= AALN,OPT=02,LINECNT=58,SIZE=0000K,
SOURCE,EACDIC,NOLIST,NODECK,LOAD,MAP,NOEDIT,ID,NOXREF

```

C PROGRAM TU CCMPJTE ABRODYNAMIC ADMITTANCE FUNCTIOAS
C FOR PLATES WIT CLAMPED EDGES
C EM IS MACA NUMBEA
C DO NOT USA EM \(=1.0\)
C AB IS PLATE LENGTH/WIDTH RATIO
C MMAX IS Tide NUMBER UF MODES USED IN THE EXPRESSION
\(C\) FOR THE PLATE DAFLECTION
C IMAX IS THE NUBBER OF POINTS AT MHICH EACH
C ADHITTANCE FUNCTION IS TO BE COMPUTED
\(C\) THE AEH'S AND ASI'S ARE THE ADMITTANCE FUNCTIONS
DIMENSION AEH (12, 12, 100), AEI (12, 12, 100)
DIMENSION FEAM(5000)
READ (5, 11) EM, AB, MMAX, IMAX
QRITE \((6,11)\) EM, AB, MMAX, IMAX
11 FORMAT (2F10.4, 2I10)
DO \(1011 I=1\), MMAX
DO \(1011 \mathrm{~J}=1, \operatorname{MAAX}\)
DO \(1011 \mathrm{~K}=1,100\)
\(\operatorname{AEH}(\mathrm{I}, \mathrm{J}, \mathrm{K})=0\).
1011 AEI \((I, J, K)=0\).
CIMAX=IMAX
CMMAX=MAAX
\(\mathrm{PI}=3.14159\)
\(S I G P=E M /(E M-1\).
IF(EM.GT.1.) GO TO 15
EMP \(=E M * * 2 /(1 .-2 M * * 2)\)
\(A B P=(A B * * 2+1.) / A B * * 2\)
SIGF \(=\) EMP + SQRT (EAP**2+EMP*ABP)
15
CONTINUE
DELSIG \(=\) SIGF/CIIAX
WRITE (6.17) SI;F, DELSIG
PORMAT (2E20.4)
GAMMAX=3.*PI
ALPMAX=SQRT \((\{\) PI* \((C M M A X+1)) * * 2+100.)+\).5 .
Do \(24 \mathrm{I}=1\), IMAX
CI=I
S=CI*DELSIG
DELGAM=PL/4.
DELALP=PI/(4.*(1.*.2*S*(EM+1.)/EM))
DEL \(=-\) DELGAM*DELALP/(PI*EM)**2
NGAM=GAMMAX/DEL;AM
NALP=ALPMAX/DELALP
WRITE (6, Sy) NALP,NGAM
PORMAT (2I20)
\(\mathrm{X}=\mathrm{DELALP} / 2\).
DO \(22 \mathrm{~L}=1\), NALP
GERM=0.
\(G A M=.01\)
DO \(23 \mathrm{~K}=1\), NGAM
\(\mathrm{SQ}=\mathrm{SQRT} \quad(\mathrm{X} * * 2+\mathrm{GAM} * * 2 * A B * * 2)\)
\(\mathrm{Z}=\mathrm{SQ} * \mathrm{~S} / \mathrm{EM}\)
CALL GMR(GAM, 1, 1,GR,GI)
\(\mathrm{C}=\mathrm{GR}\)
GERM=GERM+C*SQ*BJ1(Z)

ISN 0047
ISN 0048
ISN 0049
ISN 0050
ISN 0051
ISN 0052
ISN 0053
ISN 0054
ISN 0055
ISN 0056
ISN 0057
ISN 0058
ISN 0059
ISN 0060
ISN 0061
ISN 0062
ISN 0063
ISN 0064
TSM 0065
ISN 0066
ISN 0067
ISA 0068
ISN 0069
IS: 0070
```

 23 GAM=GAM+DSLGAM
 FERM(L) =G3RM
 X=X+DELAL?
 DO 21 M=1,MMAX
 DO 21 MR=M,MBAX
 ALPH= DELALP/2.
 TERMH=0.
 TERMI=0.
 DO 10 J=1,NALP
 CALL GMR(ALPH,M, \R,GR,GI)
 TERMH=TERAH+(GR*SIN (ALPH*S)-GI*COS (ALPA*S))
 1 *PERM(J)*ALPH
 TERMI=TERMI+(GR*COS (ALPH*S) +GI*SIM (ALPH*S))*PERH(J)
 ALPH=ALPH+DSLALP
 AEH (M, MR,I) =TERMH*DRL
 AEI (H,MR,I)=TEREI*DRL
 WRITE(5,12) AEH(M,MR,T),AEI(M,MR,I),M,MR,I
 FORMAT (2E20.3,3I10)
 CONTINUE
 CONTINUE
 FORMAT (6E20.3)
 URITE ADMITTANLE FUNCTIONS ONTO TAPE
    ```

```

 ENDPILE 10
 STOP
 END
    ```

COMPILER OPTIONS - NAME = MAIN,OPT=02, LIMECNT=58,SIZE=0000K,

ISN 0002
ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISA 0011
ISN 0012
IS: 0013
ISN 0015
ISH 0016 ISN 0017 ISN 0018 ISF 0019 IS月 0020 ISH 0021 ISM 0022

SOUBCE, EBCDIC, NOLIST, NODECK, LOAD, MAP, NOEDIT, ID, MOXREF
SUBROUTINZ GMR (X,M,N,GR,GI)
C CLAMPED PLATE
\(X X=X\)
\(P I=3.14159\)
\(A M=M\)
\(\mathrm{AN}=\mathrm{N}\)
\(A=P I *(A .1-1\).
\(B=P I *(A M+1\).
\(C=P I *(A N-1\).
\(D=P I *(A N+1\).
CONTINUG
DENOM \(=(X * * 2-A * * 2) *(X * * 2-B * * 2) *(X * * 2-C * * 2)\)
1 * (X**2-u**2)
IF (ABS (DRMOA).LT. 1.OB-10) GO TO 12
\(G R=A M P *((1 .+(-1) * *.(G+N))+((-1) * * H+.(-1) * * N)\).
\(1 * \cos (X)\) )
\(G I=A M P * S I N(X) *((-1) * * N-.(-1) * * M\).
\(X=X X\)
RETURN
CONTINUS
\(X=X+.01\)
GO TO 14
EKD
```

LEVEL 21.6 (MAY 72)
COMPILER OPTIONS - NAHE= NAIM,OPT=02,LINECNT=58,SIZE=0000K,
IS\ 0002
ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
15N 0009
IS: 0010
ISN 0011
ISN 0012
ISN 0013
COMPILER OPTIONS - NAHE= MAIM,OPT=02,LINECNT=58,SIZE=0000K,
IS: 0002 SOJRCE, SBCDIC, NOLIST, NODECK, LOAD, HAP, MOEDTT,ID, MOXREP
ISN 0003
ISN 0004 ISN 0005
ISN 0006
ISN 0007
ISN 0008
15N 0009
IS月 0010
ISN 0011
ISN 0012
ISN 0013
C POLYNOMIAL APPROXIMATION POB BESSEL FUNCTION
IF (X-3.) 1, 2,2
$1 \quad Y=(X / 3) * *$. BJ $1=X *$ (.5-. $56249985 * Y+.21093573 * Y * 2-.03954289 * 1 * * 34$

```

``` GO TO 3 \(\mathrm{I}=3 . / \mathrm{X}\) \(\mathrm{F} 1=.79788456+.00000156 * \mathrm{Y}+.01659667 * \mathrm{Y} * * 2+.00017105 * \mathrm{Y} * * 3-\)
1 . 00249511 *Y**4+.J0113653*Y**5-.00020033*Y**6 TH1=X-2.3561944 t+. \(12459612 * Y 4.00005656 * Y * 2-.00637879 * Y * 34\)
\(1.00074348 * y * * 4+.00079824 * y * * 5-.00029166 * \% * * 6\) \(\mathrm{BJ} 1=\mathrm{F} 1 * \operatorname{Cos}(\mathrm{TH} 1) / \mathrm{SQRT}(\mathrm{X})\)
CONTINUE
RETURN
END
```

```
COMPILER OPTIONS - NAME= MAIN,OPT=02.LINECNT=58,SIZE=0000R,
SOUREE, BBCDIC,NOLIST,NODECK,LOAD, HAP,NOEDIT,ID,NOXREP
 FLUTTER PHOGRAM FOR CLAMPED-EDGE PLATES OSING
 LINEARIZED POTENTIAL PLOW AERODYNAMICS
 LAMDA=DYNAMIC PRESSURZ,MU=FLOW DENSITY,HACH=MACH NUKBER
 AB=PLATE CENGTH/NIDIH RATIO,RXA,RYA=APPLIED IN-PLANE
 LOAD (POSITIVE IN TENSION), PSTAT=STATIC PRESSURE
 DIFFERENTIAL, CAVITY=CAVITY ACOUSTIC PARAMETRR
 DAMP=STROCTUAAL DANPING FACTOR
 NV=#OF MOJES,H=INTEGRATION STEP IRTERVAL,TPRINT=PRINT-OUT
 INTERYAL, IFINAL=TIHE AT WHICH INTEGRATION STOPS
 SCALE=MAXIMUM ANPICIPATED DEFLECTION (POR GRAPH ROUTINE)
 X, .. = ALPHANUGEBIS CHARACTERS FOR GRAPH ROUTINE
 THE A'S ARE MOJAL AMPLITUDES
 THE H'S AR心 THE RANEL DEPLECTICN AT 15 EVENLY SPACED POINTS
 ALONG THE PANEL CGNTERLINE
```


REMOVE CARDS * 177 THROUGH 189 FOR ZERO EDGE RESTRAIRT
CALCULATION

ISN 0002
ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 0014
ISN 0015
ISN 0016
ISN 0017
ISN 0018
ISN 0019

ISN 0020

ISN 0021

ISN 0022
ISN 0023
ISN 0024
ISN 0025
ISN 0026
ISN 0027
ISN 0028
ISN 0029
ISN 0030
ISN 0031
ISN 0032

REMOVE CARDS \#177 THROUGH 189 POR ZERO EDGE RESTRAIRT CALCULATION

REAL LAMDA, MU
REAL NU
REAL MACH
DIMENSION $\mathrm{B}(12,12,12,12)$
DIMENSION AEH $(12,12,100)$, AEI $(12,12,100)$
DIMENSION AS $(500,12)$, DAS $(500,12)$
DIMENSION S (12, 12), C $(12,12), \mathrm{D}(12,12), \operatorname{PHIX}(12,12), \operatorname{PHIY}(12,12)$
DIMENSION A (12), DA (12), DDA (12), DDAS (4, 12)
DIMENSICN Q $(12,12)$
DIMENSTON $W(15), F(12)$
DIMENSION ST $(12,12)$
DIMENSION UM (12,12)
DIMENSION WV(24)
DIMENSTON RINE(61)
REAL* 8 N
REAL* 8 K
$\operatorname{PP}(I, M)=\operatorname{CC}(I-1, M-1)-C C(I-1, M+1)-C C(I+1, M-1)+C C(I+1, M+1)$
$\operatorname{PPX}(I, J)=-\operatorname{PI} * ?$ LOAT $(J-1) *(C S(I-1, J-1)-C S(I+1, J-1))$
$1+\operatorname{PI*PLJAS}(\mathrm{J}+1) *(\operatorname{CS}(\mathrm{I}-1, \mathrm{~J}+1)-\operatorname{CS}(\mathrm{I}+1, \mathrm{~J}+1))$
PPXX (I, M $)=-\mathrm{PI} 2 * \mathrm{FLJAP}(M-1) * * 2 *(C C(I-1, M-1)-C C(I+1, M-1))$
$1+\operatorname{PI} 2 * \operatorname{FLOAT}(M+1) * * 2 *(\operatorname{CC}(I-1, M+1)-\operatorname{CC}(I+1, M+1))$
$\operatorname{PPXXXX}(I, M)=\operatorname{PI} 4 * \operatorname{PLOAT}(M-1) * * 4 *(C C(I-1, M-1)-C C(I+1, M-1))$
1 - PI4*FLOAT $(M+1) * * 4 *(C=(I-1, M+1)-C C(I+1, M+1))$
FORMAT (1if0)
FORMAT (1A1)
$P I=3.14159$
PI2 $=\mathrm{PI}$ * PI
PI3 $=$ PI2*PI
PI4 = PI3*PI
$\mathrm{NU}=.3$
READ (5.701) CRJSS, BLANK, DOT, SCALE
FORMAT (3A1, F7.1)
MRITE ( 0,700 ) こoSSS, BLANK, DOT, SCALE
FORMAT (1X, 3A1, F7.2)

ISN 0033
ISN 0034
ISN 0035
ISN 0036
ISN 0037
ISN 0038
ISN 0039
ISN 0040
ISN 0041
ISN 0042
ISN 0043
ISN 0044
ISN 0045
ISN 0046
ISN 0047
ISN 0048
ISN 0049
ISN 0050
ISN 0051
ISN 0052
ISN 0053
15N 0054
IS月 0055
ISN 0056
ISN 0057
ISN 0058
ISN 0059
ISN 0060
TSN 0061
ISN 0062
ISN 0063
ISN 0064
ISN 0065
ISN 0066
ISN 0067
ISN 0068
ISN 0069
ISN 0070
IS: 0071
ISN 0072
ISN 0073
ISN 0074
ISN 0075
ISN 0077
ISN 0079
ISN 0080
ISN 0081
IS: 0082
ISN 0083
ISN 0084
ISN 0085
ISN 0086
ISN 0087
ISN 0089

```
 SCALE = 30./SCALE
 DO 702 I = 1.61
 RINE(I) = ELANK
 READ NONLINEAR TSRMS FBOM TAPE
 READ(10) B
 REWIND 10
 READ AERODYNAMI: ADMITTANCE PONCTIONS PROM TAPE
 READ(12) AEH,AEI,MACH,AB,SIGF,ISMAX
 REWIND 12
 GRITE (6,1)
 WRITE(6,13) MAC.,AB,NV,ISMAX,SIGF
 FORMAT(2F10.4,2I10.E10.3)
 FORMAT (1P8&G.2)
 FORMAT (10E12.3)
 MRITE (6,1)
 READ (5,110) LAMOA, MU, PSTAT, CAYITY
 FORMAT (4E10.3)
 URITE (6, 1101) LAMDA,MU,PSTAT,CAYITY
 FORNAT(1HO,1P4E10.3)
 READ (5,110) EXA, RYA
 MRITE(6,1101) RXA,HYA
 WRITE (6,1)
 READ (5,116) DAMP
 PORMAT(E1J.3)
 WRITE (6,117) DAMP
 FORMAT(' STROCIURAL DAMPING= ', E12.3)
 HBITE (6,1)
 READ (5,1113) NV,H,TPRINT,TPINAL
 WRITE (6,1113) NY,H,TPMINT,TPINAL
 1113 PORMAT (I10,3E1J.3)
 WRITE (6,1)
 READ (5,113) (A(I), I = 1,NV)
 WRITE (5,115) (A(I), I = 1,NV)
 READ (5,113) (DA(I), I = 1,NV)
 MRITE (6,115) (JA(I), I = 1,NV)
 FORMAT (6E10.3)
 FORMAT(1X,6E12.3)
 AB2 = AB**2
 AB4 = Ad***4
 RISMAX = ISIAX
 DELS = SIGF/RISMAX
 ROOT = SQRT(LAMJA/MU)
 HAERO = RJOT*H
 NAERO = DELS/HA 3HO
 IF(NAERO. LT.1) GJ TO 404
 IF(NAERO.GT.20) NAEAO = 20
 DELSIG = NAERO*IAERO
 IMAX = SIGP/DELSIG
 GO TO 406
 NAERO=1
 DELSIG = OELS
 H= DELSIG/RCOT
 IMAX = ISAAX
 HP= DSLSIG/ROOT
```

    404 CONTINUE
    406 CONTINUE
    ISN 0089
ISN 0090
ISN 0091
ISN 0092
ISN 0094
IS＊ 0095
ISN 0096
ISN 0097
ISN 0098
ISN 0099
ISN 0100
ISN 0101
ISN 0102
ISN 0103
ISN 0104
ISN 0105
ISN 0106
ISN 0107
ISN 0108
ISN 0109
ISN 0110
ISN 0111
ISN 0112
ISN 0113
ISA 0114
IS月 0115
ISN 0116
ISN 0117
ISN 0118
ISN 0119
ISN 0120
ISN 0121
ISN 0122
ISN 0123
ISN 0124
IS日 0125
ISN 0126
IS： 0127
ISM 0128
ISN 0129
ISN 0130
ISN 0131
ISN 0132
ISN 0133
ISN 0134
ISN 0135
ISN 0136
ISN 0137
ISN 0138
ISN 0139
ISN 0140
ISN 0141
ISN 0142
ISN 0443

```
 HRITE (6,1)
 WRITE(6,4J1) H,DZLSIG,NAERO,IMAX
 FORMAT(2&20.3,255)
 IF(IMAX.GT. 100) STOP
 NSTORE = NAEGO*IMAX
 DO 3 I= 1,NV
 DO }3\textrm{J}=1,N
 DO }3\textrm{K}=1.ISMA
 AEH(I,J,100-K+1)=AEH(I,J,ISMAX-K+1)
 AEI(I,J,10J-K+1)=ASI (I,J,ISHAX-K+1)
 3 CONTINUE
 IP=100-IS:AXX+1
 DO 400 = 1,NV
 DO 400 N = M,NV
 DO 400 I = 1.IMAX
 X = FLOAT(I) * DESSIG/DELS
 J=INT(X)
 P=X-AINT(X)
 JP=IP-1+J
 IF (J) 300,3C0,301
 AEH(M,N,I)=AEH(%,N,JP+1)*P
 AEI (M,N,I)=AEI (M,N,JP+1)*P
 GO TO 4JO
 AEH (M,N,I)=ABA(M,N,JP)*(1, -P) + AEH(M,N,JP+1)*P
 AEI(H,N,I)=A己I(M,N,JP)*(1.-P) + AEI (M,N,JP+1)*P
 CONTINUE
 DO 410 M = 1,NV
 DO 410N=M,NV
 DO 410 I = 1.IMAX
 AEH (N,M,I)=(-1.)** (M+N)*AEH(M,N,I)
 AEI(N,M,I)=(-1.)**(M+N)*AEI (M,N,I)
 CONTINUE
 DO 30 I = 1,NV
 DO 30 J=1,NV
 S(I,J) = PP(I,N) *PP(1,1)
 ST(I,J) = S(I,J)
 C(I,J)=PPPXXX([,J)*PP{1,1) + 2.*AB2*PPXX(I,J) *PPPXX(1,1)
 1 + AB4*PP([,J)*PPXXXX(1, 1)
 D(I,J)=PPX(I,J)*PP(1,1)
 PHIX (I,J) =- PPXX(I,J)*PP(1,1)
 PHIY(I,J)=-PP([,J)*PPXX(1, 1)
 CONTINUE
 WRITE (6,1)
 DO 910 I = 1.NY
 WRITE (6,573) (S (I,J), J = 1,NV)
 WRITE (6,1)
 DO 580 [= 1,NV
 WRTTE (6,573) (C(I,J), J = 1,NY)
 FORMAT (8E16.4)
 INVERT S AND STMRE IN S
 CALL MATIN2(S,NV,12,WU,12,WV,RINVRT, 24)
 NRITE(5,1)
 HRITE(6,5067) KENVRT
 FORMAT (L5)
 WRITE (6,1)
 DO 912 [= 1,NV
```

    401
    

ISN 0196
ISN 0197
ISN 0198
ISN 0199
ISN 0200
ISN 0201
ISN 0202
ISN 0203
ISH 0204
ISN 0205
ISN 0206
ISN 0207
ISN 0208
ISN 0209
ISN 0210
ISN 0211
ISN 0213
ISN 0214
ISN 0215
ISN 0216
ISN 0217
ISN 0218
ISN 0219
ISN 0220
ISN 0221
ISN 0222
ISN 0223
ISN 0224
ISN 0225

ISN 0226
ISN 0227
ISN 0228
ISN 0229
ISN 0230
ISN 0231
ISN 0232
ISN 0233

ISN 0235
ISN 0236
ISN 0237
ISN 0239
ISN 0241
ISN 0242
ISN 0243
ISN 0244
ISN 0245
ISN 0246
ISN 0247

DO $220 \mathrm{~J}=1, \mathrm{NV}$
DO $220 \mathrm{~K}=1 . \mathrm{NV}$
LSUM $=\mathrm{I}+\mathrm{J}+\mathrm{K}$
$\mathrm{LS}=2 *(\mathrm{LSUM} / 2)-\mathrm{LSUM}+2$
DO $220 \mathrm{~L}=\mathrm{LS}, \mathrm{NV}, 2$
$P(I)=F(I)-B(I, J, K, L) * A(J) * A(K) * A(L)$
DO $230 \mathrm{~J}=1 \mathrm{NV}$
$F(I)=P(I)-C(I, J) * A(J)-L A M D A * Q(I, J)-D A M P * C(I, J) * D A(J)$
CONTINUE
$P(1)=P(1)-$ CAVITY*A(1) + PSTAT
DO $240 I=1, N V$
$\operatorname{DDA}(I)=0$.
DO $240 \mathrm{~J}=1, \mathrm{NV}$
$D D A(I)=D D A(I) * S(I, J) * F(J)$
CONTINUE
PRINT OUTPUT
IF(T.LT.TP) GO TO 350
$T P=T P+T P R I N T$
PRINT MODAL AMPLITUDES, VELOCITTES, AND ACCELERATIONS
员RITE $(6,345) \mathrm{T}$
FORMAT (6H TIM2=, P7.4)
WRITE $(6,347)(A(I) . \quad I=1, N V)$
WRITE ( 6,347 ) (JA(I), I = 1,NV)
WRITE $(6,347)$ (LLA (I), $I=1, N V)$
FORMAT (6E11.3)
DO $348 \mathrm{I}=1.15$
$W(I)=0$.
THETA $=$ PI*PLOAT (I) $/ 16$.
DO $346 \mathrm{~J}=1 \mathrm{NV}$
$W(I)=W(I)+2 . * A(J) *(\operatorname{COS}(F L O A T(J-1) * T H E T A)-\operatorname{COS}(P L O A T(J+1)$
1 *THETA)
CONTINUE
PRINT PLATE DEFGECTICN AT 15 EQUALLY SPACED POINTS ALONG THE
CENTERLINE JF PAB PANEL
WRITE (ó, 349) (iN(I), $I=1,15)$
FORMAT ( $8 \mathrm{F7} 7.2$ )
RINE(1) $=$ DOT
RINE(31) = SOT
RINF(61) $=$ JOT
$\mathrm{L}=$ SCALE* $\mathrm{L}^{(12)}$
$L P=31+L$
$\operatorname{IP}(\operatorname{IABS}(L) \cdot L E \cdot 3) \operatorname{RIN} \mathcal{L}(L P)=C R O S S$
C GRAPH DEFLECTIUN OF DUINT ON LATERAL CENTERLINE OP PANEL
$3 / 4$ OF NAY EACK PROM LOADING EDGE
WHITE (G.703) (RINE(I), I = 1.61)
PORMAT ( $68 \mathrm{X}, \mathrm{61A1)}$
IF (IABS (L).LE.3) BINB(LP) = BLANK
IP(T.GE.TFLNAL) : 0 PO 57
CONTINTB
STORE VARIABLES
DO $24 \mathrm{~J}=2$ NSTJRE
$K=N S T U R E-J+2$
$K P=K-1$
DO $24 \mathrm{I}=1, \mathrm{NV}$
$A S(K, I)=A S(K P, \Gamma)$
$\operatorname{DAS}(K, I)=\operatorname{DAS}(K \mathcal{L}, I)$

ISN 0248
ISN 0249
ISN 0250
ISN 0251
ISN 0252
ISN 0253
ISN 0254
ISN 0255
ISN 0256
ISN 0257
ISN 0258
ISN 0259
ISH 0260 ISN 0261

ISN 0262
ISA 0263
ISN 0264
ISH 0265 IS: 0266 ISH 0267 ISN 0268

24
Dow
DO $26 \mathrm{~J}=2.4$
$K=6-J$
$K P=K-1$
DO $26 \mathrm{I}=1, \mathrm{NV}$
$\operatorname{DDAS}(K, I)=\operatorname{DDAS}(K P, I)$
CORTINU:
DO $28 \mathrm{I}=1$, NV
AS (1,I) $=A(I)$
$\operatorname{DAS}(1, I)=\operatorname{DA}(I)$
$\operatorname{DDAS}(1, I)=\operatorname{LDA}(I)$
28
C
PREDICT
DO $20 \mathrm{I}=1, \mathrm{NV}$

$1+37 . * \operatorname{DAS}(3, I)-9 . * \operatorname{DAS}(4, I))$
DA $(I)=D A(I)+H A H *(55 . * D D A S(1, I)-59 . * D D A S(2, I)$
1 +37.*DDAS (3.I)-9.*DDAS (4, I))
20

57
CONTINUB
$T=T+H$
GO TO 56
CONTINUR
STOP
END

COMPILER OPTIONS - NAME= MAIN,OPT=02,LIKECNT=58,SIZE=0000K, SOURCE, EBCDIC, NOLIST, NODECK, LOAD, MAP, NOEDIT, ID, NOXREF
ISN 0002

ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 0014
ISN 0016
ISN 0017
ISN 0018
ISN 0019
ISN 0020
ISN 0022

ISN 0024
ISN 0025
ISN 0027
ISN 0028
ISN 0029
ISN 0030
ISN 0031
ISN 0032
ISN 0034
ISN 0035
ISN 00.36
ISN 0037
ISN 0038
ISN 0039
ISN 0040
ISN 0041
ISN 0043
ISN 0044
ISN 0045
ISN 0046
IS: 0047

15
SUBROUTINE MATIN $2(A, N 1, I A, X, I X, B, I N T, N 2)$
C THIS SUBROUTINE [NVBRTS THE UPPER LEFT N1 BY N1 CORNER OP
C MATRIX A, HHICH AIICA HAS AN ACTOAL PIRST DIMEASIOB OP IA. X AND B ARE DOUBLE PRECISION MATRICES AERDED FOR YORKING SPACE-X MUST EE A DOUBLY DIMENSIONED MATRIX ZITH PIRST DIMENSION IX, B IS SINGLY DIMENSIOMBD AND SHOULD BE OF LENGTH AT LEAST 2*N1. INT IS AN IRTBGBR VARIABLE MHICH IS RETORNED EQUAL TO THO IF THE HATRIX IS TOO ILL CONDITIONEJ TO B3 INYERTED MODIPIED JURDAN SLIMINATION DOUBLE PRECISION B (N2), X(IX,N1), PIYOT,TEMP, DABS DIMENSIGN A (IA,N1) INT=1
$\mathrm{N}=\mathrm{N} 1$
Do $15 I=1, N$
DO $15 \mathrm{~J}=1, \mathrm{~N}$
$X(I, J)=A(I, J)$
DO $9 \mathrm{~K}=1$, N
C PIND THE PIVOT
PIVOT=0.
DO $1 \mathrm{I}=\mathrm{K}, \mathrm{N}$
DO $1 \mathrm{~J}=\mathrm{R}, \mathrm{N}$
IF (DABS (X(I,J)).LE.DABS (PIPOT)) GO TO 1
PIVOT=X (I, J)
$A(1, K)=I$
$A(2, K)=J$
1 CONTINUE
IP (K.EQ. 1) COMP=JABS (PIVOT)
IF ( K .EQ. 1. AND. COMP.LE. 1.E-30) . OR.
1 DABS (PIVOI) . LE. 1.5E-09\# COMP) GO TO 14 EXCHARGE HOWS $\mathrm{L}=\mathrm{A}(1, \mathrm{~K})+1 . E-6$
IF (L.EQ.K) GO TO 3
DO. $2 J=1$, $N$
$\operatorname{TEMP}=\mathrm{X}(\mathrm{L}, \mathrm{J})$
$X(L, J)=X(K, J)$
$2 \quad X(K, J)=T E M P$
C EXCHANGE COLUMNS
$-3 \quad \mathrm{~L}=\mathrm{A}(2, \mathrm{~K})+1 . \mathrm{E}-6$
IF(L.EQ.K) GO TU 5
DO $4 I=1, N$
$\operatorname{TEMP}=\mathrm{X}(\mathrm{I}, \mathrm{L})$
$X(I, L)=X(L, K)$
$4 \quad X(T, K)=T B Q P$
C. JORDAN SIEP

DO $8 \quad \mathrm{~J}=1$, N
$\mathrm{J} 2=\mathrm{N}+\mathrm{J}$
$B(J)=1 . D J / P I V O T$
IF(J.NE.K) GO TO 6
$B(\mathrm{~J} 2)=1 . \mathrm{D} 0$
GO TO 7
$6 \quad B(J)=-X(K, J) * E(J)$
$B(J 2)=X(J, K)$
$7 \quad \mathrm{X}(\mathrm{K}, \mathrm{J})=0$.

ISN	0048	8	$X(J, K)=0$.
ISN	0049		D0 $9 \mathrm{I}=1 . \mathrm{N}$
ISN	0050		I2 $=\mathrm{N}+\mathrm{I}$
ISN	0051		DO $9 \mathrm{~J}=1, \mathrm{~N}$
ISN	0052	9	$X(I, J)=X(I, J)+B(I 2) * B(J)$
		$C$	REORDER PINAL MAIMIX
ISN	0053		DO $13 \mathrm{~L}=1, \mathrm{~N}$
ISN	0054		$\mathrm{K}=\mathrm{N}+1-\mathrm{L}$
ISN	0055		$J=A(1, K)+1 . E-6$
ISN	0056		IF (J.EQ.K) GO TO 11
ISN	0058		DO $10 \mathrm{I}=1 . \mathrm{N}$
ISN	0059		TEMP $=X(I, J)$
ISN	0060		$X(1, J)=X(1, K)$
ISN	0061	10	$X(I, K)=$ TBAP
ISN	0062	11	$\mathrm{I}=\mathrm{A}(2, \mathrm{~K})+1 . \mathrm{E}-6$
ISN	0063		IP(I.EQ.K) GO TO 13
ISN	0065		DO $12 \mathrm{~J}=1 . \mathrm{N}$
ISN	0066		TEMP $=X(I, J)$
ISN	0067		$X(I, J)=X(K, J)$
ISN	0068	12	$X(K, J)=T E H P$
ISN	0069	13	Continue
ISN	0070		DO $25 \mathrm{I}=1 . \mathrm{N}$
ISN	0071		Do $25 \mathrm{~J}=1 . \mathrm{N}$
ISN	0072	25	A $(1, J)=X(I, J)$
ISN	0073		RETURN
ISN	0074	14	INT $=2$
ISN	0075		RETURN
ISN	0076		END

COMPILER OPTIONS - NAME= MAIN,OPT=02,LIMECNT=58,SIZE=0000K, SOURCE, BBCDIC, NOLIST, MODECK, LOAD, MAP, NOEDIT, ID, MOXREF

ISN 0002
ISN 0003
ISN 0004 ISN 0005 ISN 0006 ISN 0007 ISN 0009 ISN 0010

FUNCTION CS (M,N)
$C S=0$.
$P I=3.14154$
$R M=M$
$\mathrm{RN}=\mathrm{N}$
 RETURN END

COMPILER OPTIONS - NABEx MAIY,OPT=02, LIMECRT=58,SIZE=0000K, SOUACE, EACDIC, MOLIST, WODECK, LOAD, MAP, MOEDIT, ID, NOXREF

ISN 0002 IS: 0003 ISN 0004 ISN 0006 ISN 0008 ISN 0009

FUNCTIOK CC (K, K) $C C=0$.
$\operatorname{IF}(K . E Q . M) \quad C C=C C+.5$ IF (K.EQ. -M ) CC $\times \mathrm{CC}+.5$ RETURN
END

COMPILER OPTIONS - NAME= $A A I N, O P T=02, L I N E C A T=58, S I Z E=0000 K$, SOURCE, EBCDIC, NOLIST, HODECK, LOAD, HAP, NOBDIT, ID, NOXREF

ISN 0002
ISN 0003
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 0014
ISN 0015
ISN 0016
ISN 0017
ISN 0018
ISN 0019
ISN 0020
ISN 0021
ISN 0022
ISN 0023
ISN 0024
ISN 0025
ISN 0026
ISN 0027
ISN 0028
ISN 0029
ISN 0030
ISN 0031
ISN 0032
ISN 0033
ISN 0034
ISN 0035
ISN 0036
ISN 0037
ISN 0038
ISN 0039
ISN 0040
ISN 0041
ISN 0042
ISN 0043
ISN 0044
ISN 0045
ISN $0046^{\circ}$ PROGRAM TO COMPUTE STRESSES DUE TO PLATE DEPLECTIOM FOR CLABPED PLATB UITH COMPLETE IN-PLANE EDGE RESTRAIHT $A B=P L A T E$ LEAGTH/MIDTH RATIO, NV = OF HODES, HOFPOISSOR'S RATIO XA, YB=COORDINATSS OF POINT AT STRESSES AAE COMPUTED (XA, YB ARE MORDLAENSIONALIZED BY PANEL LENGTG E MIDTH) $X A=N / 16, N=0,1,2 \ldots 17$
IB IS SPECIPIED AS IMPUT DATA
THE A'S ARE THE MODAL AGPLITUDBS (DHICH DEFIME THE PLATE DEFLECTION)
REAL NU
DIMENSION A(12)
DENOA $1(K)=\left(\right.$ FLOAT $\left.\left(K^{*} * 2\right)+16 . * A B 2\right) * * 2$
DENOM2 $(\mathrm{K})=($ FLGAT $(\mathrm{K} * * 2)+4$ *AB2) * $* 2$
B1 $(\mathrm{A}, \mathrm{N})=-\operatorname{FLOAT}(2 * \mathrm{H} *(\mathrm{H}+\mathrm{N})+4) / \mathrm{DBEOH} 1(\mathrm{H}-\mathrm{N})$
B2 $(M, N)=\operatorname{PLOAT}((M-1) *(M+N)) / D E M O M 1(M-N-2)$
B3 $(\mathrm{H}, \mathrm{N})=\operatorname{FLOAT}((\mathrm{M}+1) *(\mathrm{M}+\mathrm{N})) / \mathrm{DEROM1}(\mathrm{H}-\mathrm{N}+2)$
B4 (M, N) $=\operatorname{FLOAT}(2 * \mathrm{H}=(\mathrm{H}-\mathrm{N})+4) / \mathrm{DENOH} 1(\mathrm{H}+\mathrm{H})$
B5 ( $\mathrm{H}, \mathrm{N}$ ) $=-\operatorname{PLOAP}((\mathrm{N}-1) *(\mathrm{H}-\mathrm{N})) /$ DENOM1 $(\mathrm{H}+\mathrm{N}-2)$
B6 $(M, N)=-\operatorname{PLOAT}((N+1) *(H-N)) / D E N O M 1(N+N+2)$
B7 (M,N) $=$ PLOAT (4* $\mathrm{H}^{*}+2$ +4)/DENOM2 ( $\mathrm{H}-\mathrm{N}$ )
B8 $(\mathrm{M}, \mathrm{N})=-\operatorname{FLOAP}(2 *(\mathrm{H}-1) * * 2) /$ DENOM2 $(\mathrm{M}-\mathrm{N}-2)$
B9 $(5, N)=-\operatorname{PLOAT}(2 *(M+1) * * 2) / D E N O M 2(M-N+2)$
B10 ( $\mathrm{N}, \mathrm{N}$ ) $=-\operatorname{PLOAT}(4 * \mathrm{H} * * 2+4) / \mathrm{DEHOB} 2(\mathrm{H}+\mathrm{N})$
B11 ( $\mathrm{M}, \mathrm{N}$ ) $=\operatorname{FLOAT}(2 *(\mathrm{M}-1) * * 2) / \mathrm{DENOM} 2(\mathrm{M}+\mathrm{N}-2)$
B12 (H,N) $=\operatorname{FLOAT}(2 *(\mathrm{H}+1) * * 2) / \mathrm{DENOM} 2(\mathrm{H}+\mathrm{N}+2)$
$\operatorname{CS}(\mathrm{M}, \mathrm{X})=\cos (\mathrm{FLOAT}(\mathrm{M}) * \mathrm{PI} * \mathrm{X})$
READ (5,697) AB, NV
पRITE (6.697) AB, NV
PORMAT (P10.3. I 10)
READ $\{5,697)$ YB
WRITE (6,657) YB
READ (5.699) (A(I), $I=1, N V)$
URITE (6,699) (A(I). I = 1,NV)
PORMAT (6F10.4)
$P I=3.14159$
PI2 $=$ PI**2
PI4 = PI** 4
$\mathrm{AB2}=\mathrm{AB} * * 2$
$A B 4=A B * * 4$
$\mathrm{NU}=.3$
$X A=0$.
$\mathrm{CHI}=1 .-\operatorname{CS}(2, I B)$
DO $710 \mathrm{II}=1.17$
GRITE $(6,1)$
FORMAT (1:10)
MRITE $(6,701) \mathrm{XA}, \mathrm{IB}$
FORMAT (2320.3)
$\pi=0$.
$\boldsymbol{m X}=0$.
$H Y Y=0$.
DO $704 \mathrm{M}=1 \mathrm{NV}$
$P S I=\operatorname{CS}(I-1, X A)-\operatorname{CS}(M+1, X A)$
$R M=M$
$\operatorname{PSIXX}=-(\mathrm{RM}-1) * * .2 * \operatorname{L} I 2 * \operatorname{CS}(H-1, X A)+(R M+1) * * 2 * P I$.

ISN 0047
ISN 3048
ISN 0049
ISN 0050
ISN 2051
ISN 0052
ISN 0053
ISN 0054
ISN 0055
ISN 0056
ISN 0057
ISN 0058
ISN 0059
ISN 0060
ISN 0061
ISN 0062
ISN 0063
IS V 0064
ISN 0066
ISN 0067
ISN 0068
ISN 0069
ISN 0070
ISN 0071
ISN 0072
ISN 0073
ISN 0074
ISN 0075
ISN 0076
ISN 0077
ISN 2078

ISN 0079
ISN 0080

ISN 0081
ISN 0082
ISN 0083
ISN 0084

ISN 0085
ISN 0086

ISN OOB7
ISN 0088

```
1 CS(M+1,XA)
 W = W + A(M)*PSI
 WXX = WXX + PSIXX*A(M)
 WYY = NYY + PSI*A(M)
 W = W*CHL
 WXX=.WXX*CHI
 WYY = 4.*RI2*CS(2,YB)*WYY
 WRITE (6,701) W
 WRITE (6.701) WXX, WYY
 SIGMAX = -. 5*(WXX + NU*AB2*#YY)
 SIGMAY = -. 5*(AB2*WYY + NU*HXX)
 PRINT PLATE BENOING STRESSES AT POINT (XA,YB)
 WRITE (6.701) SIGMAX, SIGMAY
 SX = 0.
 SY =.5*A(1)**2
 DO 706:M=1,NV
 RM=M
 SX = SX + (RM**2*1.)*A(M)**2
 SY = SY + A(N)**2
 IF(NV.LE.2) GO TJ 712
 NVP=NV-2
 DO 708 M = 1,NVP
 RM = M
 SX =SX - (BM+1.)**2*A(M)*A(M+2)
 SY = SY - A(M)*A(M+2)
 CONTINUE
 AB2RXB = 12.*PI 2*(.75*SX + NU*AB2*SY)
 RYB = 12.*PI2*(AB2*SY + . 75*NU*SX)
 PHIPXX = 0.
 PHIPYY = 0.
 DO 702 M = 1.NV
 DO }702\textrm{N}=1,\textrm{NV
 X = B1 (M,N)*CS (M-N,XA) & B2 (M,N)*CS(M-N-2,XA)
1+B3(M,N)*CS (M-N+2,XA) + B4 (M,N)*CS (M+N,XA)
2+B5(M,N)*CS(M+N-2,XA) + B6 (M,N)*CS (M+N+2,XA)
 YMN = -16.*PI2*CS (4,YB)*X
 X=B7(M,N)*CS(Y-N,XA) + B8 (M,N)*CS(M-N-2,XA)
 1+B9(M,N)*CS(M-N+2,XA) + B10 (M,N)*CS(M+N,XA)
 2 + B11(M,N)*CS(Y+N-2,XA) + B12(M,N)*CS (M+N+2,XA)
 YMN = YMN - 4.*PI2*SS (2,YB)*X
 RM = M
 RN=N
 X=(RM-RN)**2*B1(M,N)*CS(M-N,XA) + (RM-RN-2.)**2*B2(M,N)*
 CS (M-N-2,XA) + (AM-RN+2.)**2*B3(M,N)*CS (M-N+2,XA)
 +(RM+RN)**2*B4(M,N)*CS (M+N,XA) + (RM+RN-2.)**2*B5(M,N)
 3*CS(M+N-2,XA) +(MM+RN+2.)**2*B6(M,N)*CS (M+N+2,XA)
 XMN=-PI2*CS(4,YB)*X
 X = (RM-RN)**2*37(M,N)*CS (M-N,XA) + (RM-RN-2.)**2*B8(M,N)*
 CS(M-N-2,XA) +(AM-RN+2.)**2*B9(M,N)*CS(M-N+2,XA)
 +(KM+BN)**2*B1)(M,N)*CS}(M+N,XA)+(RM+RN-2.)**2*B11(M,N
 *CS(M+N-2,XA) + (KM+RN+2.)**2*B12(M,N)*CS (M+N+2,XA)
 XMN = XMN - PI 2*CS (2,YB)*X
 X=(RM-RN)**2*313(M,N)*CS (M-N,XA) + (RM-RN-2.)**2*B14(M,N)*
 CS(M-N-2,YA) + (RM-RN+2.)**2*B15(M,N)*CS (M-N+2,XA)
 +(RM+RN)**2*B16(M,N)*CS(M+N,XA) + (RM+RN-2.)**2*B17(M,N)
 *CS(M+N-2,XA) +(RN+HN+2.)**2*B1B(M,N)*CS (M+N+2,XA)
```

ISN	0089		XMN $=\mathrm{XMN}-\mathrm{PI} 2 * X$
ISN	0090		PHIPXX $=$ PHIPXX + XMN*A (M) *A (N)
ISN	0091	702	PHIPYY $=$ PHIPYY + YMN*A (M)*A (N)
ISN	0092		PHIPXX $=12 * *(1 .-N U * * 2) *$ AB2*PHIPXX
ISN	0093		PHIPYY $=12 * *(1 .-N J * * 2) * A B 2 * P H I P Y Y$
ISN	0094		SIGMAX $=$ AB2RXB + AB2*PHIPYY
ISN	0095		SIGMAY $=$ RYB + PHIPXX
ISN	0096		SIGMAX $=$ SIGMAX/12.
ISN	0097		SIGMAY = SIGMAY/12.
		C	PRINT IN-PLANE STRESSES at point (XA, YB)
ISN	0098		WRITE (6,701) SIGMAX, SIGMAY
ISN	0099		$X A=X A+1 . / 16$.
ISN	0100	710	CONTINUE
ISN	0101		RETORN
ISN	0102		END

COMPILER OPTIONS - NAGE = MAIN,OPT=02,LINECNT=58,SIZE=0000K. SOUACE, EBCDIC, NOLIST, NODECK, LOAD, MAP, NOEDIT, ID, NOXREF

ISN 0002 ISN 0003 ISN 0004 ISN 0006 ISN 0007 FUNCTION B13(M, H)
$\mathrm{B} 13=0$.
$\operatorname{IF}(M-N . N E \cdot O) B 13=-\operatorname{FLOAT}(2 * M) / F L O A T((M-N) * * 3)$
RETURN
END

COMPILER OPTIONS - NAME $=$ MAIR,OPT=02,LINECNT=58,SIZE=0000K,

ISN 0002
ISN 0003
ISN 0004
ISN 0006
ISN 0007

SOURCE, EACDIC, NOLIST, NODECK, LOAD, HAP, NOEDIT, ID, NOXREF FUNCTION B14 (M,N) B14 $=0$. $\operatorname{IF}(\mathrm{M}-\mathrm{N}-2 . \mathrm{NE} .0) \mathrm{B} 14=\operatorname{FLOAT}(\mathrm{M}-1) / \operatorname{FLOAT}((\mathrm{M}-\mathrm{N}-2) * * 3)$ RETURN
END

```
LEVEL 21.6 (MAY 72)
 COMPILER OPTIONS - NAME= MAIN,OPT=02,LINECNT=58,SIZE=0000K,
```

ISN 0002
ISN 0003 ISN 0004 ISN 0006 ISN 0007

```
 SOURCB, EBCDIC,NOLIST, NODECK, LOAD,MAP,NOEDIT, ID, NOYREF
 FUNCTION E15 (H,N)
 B15=0.
 IF(M-N+2.NE. O) B15= PLOAT (N+1)/FLOAT((M-N+2)**3)
 RETORN
END
```

COMPILER OPTIONS - $\mathrm{AME}=\mathrm{MAIN,OPT}=02$, LIMECNT $=58, \mathrm{SIZEF} 0000 \mathrm{~K}$.

ISN 0002
ISN 0003 ISN 0004 ISN 0006 ISN 0007
SOURCR, EBCDIC, NOLIST, NODECK, LOAD, MAP, HOEDIT, ID, MOXREF
FUNCTION B16(A, N)
$\mathrm{B16}=0$.
$\operatorname{IP}(\mathrm{H}+\mathrm{N}$. NE .0$) \mathrm{B} 16=\operatorname{LOAT}(2 * M) / \operatorname{FLOAT}((M+N) * * 3)$
RETURN
END

# COMPILER OPTIONS - NAME= MAIN, OPT=02, LINECNT=58, SIZE=0000K, 

 SOURCE, EBCDIC, NOLIST, HODECK,LOAD, MAP, NOEDIT, ID, NOXREFISN 0002
ISN 0003
ISN 0004
ISN 0006
ISN 0007

PURCTION B17(H, N)
B17 = 0 .
$\operatorname{IF}(\mathrm{H}+\mathrm{N}-2$. NB . 0$) \mathrm{B} 17=-\mathrm{FLOAT}(\mathrm{H}-1) / \mathrm{FLOAT}((\mathrm{H}+\mathrm{H}-2) * * 3)$
RETURN
EHD

COMPILER OPTIONS - NAME= MAIN,OPT=02,LIHBCBT=58,SIZE=0000R,
SOURCE, EBCDIC, NOLIST, FODECK, LOAD, BAP, HOEDIT, ID, MOEAEF

ISN 0002
ISN 0003
ISN 0004
ISN 0006
ISN 0007

FUNCTION E18(M, N)
B18 = 0 .

RETURN
END

