research
Large amplitude flutter of a low aspect ratio panel at low supersonic speeds comparison of theory and experiment
- Publication date
- Publisher
Abstract
Flutter boundaries, as well as flutter limit cycle amplitudes, frequencies and stresses were computed for a panel of length-width ratio 4.48 exposed to applied in-plane and transverse loads. The Mach number range was 1.1 to 1.4. The method used involved direct numerical integration of modal equations of motion derived from the nonlinear plate equations of von Karman, coupled with linearized potential flow aerodynamic theory. The flutter boundaries agreed reasonably well with experiment, except when the in-plane loading approached the buckling load. Structural damping had to be introduced, to produce frequencies comparable to the experimental values. Attempts to compute panel deflections or stress at a given point met with limited success. There is some evidence, however, that deflection and stress maxima can be estimated with somewhat greater accuracy