809 research outputs found

    The Concept of Time in 2D Quantum Gravity

    Full text link
    We show that the ``time'' t_s defined via spin clusters in the Ising model coupled to 2d gravity leads to a fractal dimension d_h(s) = 6 of space-time at the critical point, as advocated by Ishibashi and Kawai. In the unmagnetized phase, however, this definition of Hausdorff dimension breaks down. Numerical measurements are consistent with these results. The same definition leads to d_h(s)=16 at the critical point when applied to flat space. The fractal dimension d_h(s) is in disagreement with both analytical prediction and numerical determination of the fractal dimension d_h(g), which is based on the use of the geodesic distance t_g as ``proper time''. There seems to be no simple relation of the kind t_s = t_g^{d_h(g)/d_h(s)}, as expected by dimensional reasons.Comment: 14 pages, LaTeX, 2 ps-figure

    Energy time dispersion of a new class of magnetospheric ion events observed near the Earth's bow shock

    No full text
    International audienceWe have analyzed high time resolution (\geq6 s) data during the onset and the decay phase of several energetic (\geq35 keV) ion events observed near the Earth's bow shock by the CCE/AMPTE and IMP-7/8 spacecraft, during times of intense substorm/geomagnetic activity. We found that forward energy dispersion at the onset of events (earlier increase of middle energy ions) and/or a delayed fall of the middle energy ion fluxes at the end of events are often evident in high time resolution data. The energy spectra at the onset and the decay of this kind of events show a characteristic hump at middle (50-120 keV) energies and the angular distributions display either anisotropic or broad forms. The time scale of energy dispersion in the ion events examined was found to range from several seconds to \sim1 h depending on the ion energies compared and on the rate of variation of the Interplanetary Magnetic Field (IMF) direction. Several canditate processes are discussed to explain the observations and it is suggested that a rigidity dependent transport process of magnetospheric particles within the magnetosheath is most probably responsible for the detection of this new type of near bow shock magnetospheric ion events. The new class of ion events was observed within both the magnetosheath and the upstream region

    Notes on noncommutative supersymmetric gauge theory on the fuzzy supersphere

    Full text link
    In these notes we review Klimcik's construction of noncommutative gauge theory on the fuzzy supersphere. This theory has an exact SUSY gauge symmetry with a finite number of degrees of freedom and thus in principle it is amenable to the methods of matrix models and Monte Carlo numerical simulations. We also write down in this article a novel fuzzy supersymmetric scalar action on the fuzzy supersphere

    Parental attitudes and opinions on the use of psychotropic medication in mental disorders of childhood

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The limited number of systematic, controlled studies that assess the safety and efficacy of psychotropic medications for children reinforce the hesitation and reluctance of parents to administer such medications. The aim of this study was to investigate the attitudes of parents of children with psychiatric disorders, towards psychotropic medication.</p> <p>Methods</p> <p>A 20-item questionnaire was distributed to 140 parents during their first contact with an outpatient child psychiatric service. The questionnaire comprised of questions regarding the opinions, knowledge and attitudes of parents towards children's psychotropic medication. Sociodemographic data concerning parents and children were also recorded. Frequency tables were created and the chi-square test and Fisher's exact tests were used for the comparison of the participants' responses according to sex, educational level, age and gender of the child and use of medication.</p> <p>Results</p> <p>Respondents were mostly mothers aged 25–45 years. Children for whom they asked for help with were mostly boys, aged between 6 and 12 years old. A total of 83% of the subjects stated that they knew psychotropic drugs are classified into categories, each having a distinct mechanism of action and effectiveness. A total of 40% believe that there is a proper use of psychotropic medication, while 20% believe that psychiatrists unnecessarily use high doses of psychotropic medication. A total of 80% fear psychotropic agents more than other types of medication. Most parents are afraid to administer psychotropic medication to their child when compared to any other medication, and believe that psychotherapy is the most effective method of dealing with every kind of mental disorders, including childhood schizophrenia (65%). The belief that children who take psychotropic medication from early childhood are more likely to develop drug addiction later is correlated with the parental level of education.</p> <p>Conclusion</p> <p>Parents' opinions and beliefs are not in line with scientific facts. This suggests a need to further inform the parents on the safety and efficacy of psychotropic medication in order to improve treatment compliance.</p

    A new perspective on matter coupling in 2d quantum gravity

    Full text link
    We provide compelling evidence that a previously introduced model of non-perturbative 2d Lorentzian quantum gravity exhibits (two-dimensional) flat-space behaviour when coupled to Ising spins. The evidence comes from both a high-temperature expansion and from Monte Carlo simulations of the combined gravity-matter system. This weak-coupling behaviour lends further support to the conclusion that the Lorentzian model is a genuine alternative to Liouville quantum gravity in two dimensions, with a different, and much `smoother' critical behaviour.Comment: 24 pages, 7 figures (postscript

    A practical solution to the sign problem in a matrix model for dynamical compactification

    Full text link
    The matrix model formulation of superstring theory offers the possibility to understand the appearance of 4d space-time from 10d as a consequence of spontaneous breaking of the SO(10) symmetry. Monte Carlo studies of this issue is technically difficult due to the so-called sign problem. We present a practical solution to this problem generalizing the factorization method proposed originally by two of the authors (K.N.A. and J.N.). Explicit Monte Carlo calculations and large-N extrapolations are performed in a simpler matrix model with similar properties, and reproduce quantitative results obtained previously by the Gaussian expansion method. Our results also confirm that the spontaneous symmetry breaking indeed occurs due to the phase of the fermion determinant, which vanishes for collapsed configurations. We clarify various generic features of this approach, which would be useful in applying it to other statistical systems with the sign problem.Comment: 44 pages, 64 figures, v2: some minor typos correcte

    Anomaly Detection in Small-Scale Industrial and Household Appliances

    Get PDF
    Anomaly detection is concerned with identifying rare events/ observations that differ substantially from the majority of the data. It is considered an important task in the energy sector to enable the identification of non-standard device conditions. The use of anomaly detection techniques in small-scale residential and industrial settings can provide useful insights about device health, maintenance requirements, and downtime, which in turn can lead to lower operating costs. There are numerous approaches for detecting anomalies in a range of application scenarios such as prescriptive appliance maintenance. This work reports on anomaly detection using a data set of fridge power consumption that operates on a near zero energy building scenario. We implement a variety of machine and deep learning algorithms and evaluate performances using multiple metrics. In the light of the present state of the art, the contribution of this work is the development of a inference pipeline that incorporates numerous methodologies and algorithms capable of producing high accuracy results for detecting appliance failures

    A new approach to the complex-action problem and its application to a nonperturbative study of superstring theory

    Full text link
    Monte Carlo simulations of a system whose action has an imaginary part are considered to be extremely difficult. We propose a new approach to this `complex-action problem', which utilizes a factorization property of distribution functions. The basic idea is quite general, and it removes the so-called overlap problem completely. Here we apply the method to a nonperturbative study of superstring theory using its matrix formulation. In this particular example, the distribution function turns out to be positive definite, which allows us to reduce the problem even further. Our numerical results suggest an intuitive explanation for the dynamical generation of 4d space-time.Comment: 7 pages, 4 figures, PRD version somewhat extended from the original versio

    Line shape analysis of the Kβ\beta transition in muonic hydrogen

    Full text link
    The Kβ\beta transition in muonic hydrogen was measured with a high-resolution crystal spectrometer. The spectrum is shown to be sensitive to the ground-state hyperfine splitting, the corresponding triplet-to-singlet ratio, and the kinetic energy distribution in the 3p3p state. The hyperfine splitting and triplet-to-singlet ratio are found to be consistent with the values expected from theoretical and experimental investigations and, therefore, were fixed accordingly in order to reduce the uncertainties in the further reconstruction of the kinetic energy distribution. The presence of high-energetic components was established and quantified in both a phenomenological, i.e. cascade-model-free fit, and in a direct deconvolution of the Doppler broadening based on the Bayesian approach.Comment: 22 pages, 21 figure

    CD40 Activity on Mesenchymal Cells Negatively Regulates OX40L to Maintain Bone Marrow Immune Homeostasis Under Stress Conditions

    Get PDF
    Background: Within the bone marrow (BM), mature T cells are maintained under homeostatic conditions to facilitate proper hematopoietic development. This homeostasis depends upon a peculiar elevated frequency of regulatory T cells (Tregs) and immune regulatory activities from BM-mesenchymal stem cells (BM-MSCs). In response to BM transplantation (BMT), the conditioning regimen exposes the BM to a dramatic induction of inflammatory cytokines and causes an unbalanced T-effector (Teff) and Treg ratio. This imbalance negatively impacts hematopoiesis, particularly in regard to B-cell lymphopoiesis that requires an intact cross-talk between BM-MSCs and Tregs. The mechanisms underlying the ability of BM-MSCs to restore Treg homeostasis and proper B-cell development are currently unknown. Methods: We studied the role of host radio-resistant cell-derived CD40 in restoring Teff/Treg homeostasis and proper B-cell development in a murine model of BMT. We characterized the host cellular source of CD40 and performed radiation chimera analyses by transplanting WT or Cd40-KO with WT BM in the presence of T-reg and co-infusing WT or - Cd40-KO BM-MSCs. Residual host and donor T cell expansion and activation (cytokine production) and also the expression of Treg fitness markers and conversion to Th17 were analyzed. The presence of Cd40+ BM-MSCs was analyzed in a human setting in correlation with the frequency of B-cell precursors in patients who underwent HSCT and variably developed acute graft-versus-host (aGVDH) disease. Results: CD40 expression is nearly undetectable in the BM, yet a Cd40-KO recipient of WT donor chimera exhibited impaired B-cell lymphopoiesis and Treg development. Lethal irradiation promotes CD40 and OX40L expression in radio-resistant BM-MSCs through the induction of pro-inflammatory cytokines. OX40L favors Teff expansion and activation at the expense of Tregs; however, the expression of CD40 dampens OX40L expression and restores Treg homeostasis, thus facilitating proper B-cell development. Indeed, in contrast to dendritic cells in secondary lymphoid organs that require CD40 triggers to express OX40L, BM-MSCs require CD40 to inhibit OX40L expression. Conclusions: CD40+ BM-MSCs are immune regulatory elements within BM. Loss of CD40 results in uncontrolled T cell activation due to a reduced number of Tregs, and B-cell development is consequently impaired. GVHD provides an example of how a loss of CD40+ BM-MSCs and a reduction in B-cell precursors may occur in a human setting
    corecore