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Abstract. Anomaly detection is concerned with identifying rare events/
observations that differ substantially from the majority of the data. It
is considered an important task in the energy sector to enable the iden-
tification of non-standard device conditions. The use of anomaly detec-
tion techniques in small-scale residential and industrial settings can pro-
vide useful insights about device health, maintenance requirements, and
downtime, which in turn can lead to lower operating costs. There are
numerous approaches for detecting anomalies in a range of application
scenarios such as prescriptive appliance maintenance. This work reports
on anomaly detection using a data set of fridge power consumption that
operates on a near zero energy building scenario. We implement a vari-
ety of machine and deep learning algorithms and evaluate performances
using multiple metrics. In the light of the present state of the art, the
contribution of this work is the development of a inference pipeline that
incorporates numerous methodologies and algorithms capable of produc-
ing high accuracy results for detecting appliance failures.

Keywords: Anomaly detection · Time series analysis · Machine learning
· Deep learning.
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1 Introduction

Predictive maintenance (PdM) aims to optimize the trade off between run-to-
failure and periodic maintenance, by empowering manufacturers to improve the
remaining useful life of their machines while at the same time avoiding un-
planned downtime and decreasing planned downtime. At the core of PdM lies
Anomaly Detection task (AD) whose primary focus is to find anomalies in the
operation of working equipment at early stages and alert the supervisor to carry
out maintenance activity. In addition, anomaly detection may stand as a core
component for prescriptive maintenance (PsM) being a type of maintenance that
gains popularity lately and poses as the evolution of PdM.

In recent years, AD has proved beneficial in different application scenarios
and has acquired a prominent stance in the unsupervised machine learning re-
search. AD finds use in different fields such as healthcare, where it applies to
the analysis of clinical images [1] and of ECG data [2], in the cybersecurity
field, where it is applied for malware identification [3] and in the energy field. In
this latter area AD may be combined with energy load forecasting to improve
accuracy [4], or integrated as a component for detecting non nominal energy
fluctuations for enhancing decision making in energy transfer between micro-
grids [5]. AD has also been successfully employed for banking fraud detection
[6].

However, the lack of public data sets for small scale industrial devices and
household appliances makes it difficult to understand the applicability of the
anomaly detection methods used for large industrial devices in other contexts
such as domestic appliances or common service system in residential buildings
(e.g. heating or air-conditioning systems).

This paper summarizes and evaluates the current status of the art on anomaly
detection approaches with a focus on their applicability to the context of house-
hold appliances. The primary objective is to provide a comprehensive survey of
the most important contributions, developments, and experimental approaches
in the field. By implementing some of them for the specific use case of a fridge
energy behavior, we assess the most relevant techniques and highlight the out-
standing research problems for the specific target of house appliances and resi-
dential building systems.

The rest of the article is organised as follows: Section 2 overviews the state
of the art in anomaly detection. Section 3 surveys the research design including
the used data sets, the identified methods and the most common evaluation
metrics. Section 4 summarizes the obtained results. Finally, Section 5 provides
the conclusions.

2 Related Work

AD refers to the identification of rare events or observations which significantly
deviate from the majority of the data [7].

This task spans different disciplines and is primarily applied in industrial
IoT applications where data are collected as time series [8]. Time series data
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sets collect observations sampled at different times: recording can be continuous,
when data are collected continuously in a given interval, or discrete, when data
are recorded at set time intervals [9]. In the literature, anomalies for time series
are classified into three different types [8,10,11]:

– PointAnomaly: represents data that abruptly deviates from the normal
ones. With these anomaly types, the time series usually returns to its previ-
ous normal state within a very short time of only a few observations.

– ContextualAnomaly: represents an instance of a potential anomaly in a
specific context. This means that the same data point in a different time
period would not always indicate an anomalous behavior.

– CollectiveAnomaly: collection of observations that are anomalous with re-
spect to the rest of the data. Individual observations within a collective
anomaly may or may not be anomalous, but considered as a group they
appear suspicious.

Based on the number of observations at each timestamp, the time series can
be univariate or multivariate. Univariate time series log values generated by a sin-
gle sensor, whereas multivariate time series record signals from multiple sensors
simultaneously. Depending on the nature of the time series different algorithms
and approaches have been applied, ranging from more classical and statistical
techniques to the deep learning ones. Moreover, the different approaches can be
categorized into three different types depending on their anomaly identification
criteria as follow:

– Reconstruction error : this criterion applies to all those models whose objec-
tive is to generate an output as close as possible to the input. An example is
the Autoencoder-based models, which reconstruct input data by extracting
features from them. Anomalous data are identified based on the residuals
between the input and the generated data: the higher the difference, the
higher the probability of an anomaly.

– Prediction error : prediction models are used to identify anomalies based on
the difference between the predicted value and the expected one. Like the
models based on input reconstruction, the larger the residual, the higher the
probability of anomalous data.

– Dissimilarity : this criterion consists of identifying outliers based on the dif-
ference between the input data and the distribution or clusters obtained from
the analysis of normal data.

Statistical methods based on regressive models are used for the identification
of the outliers in univariate time series, such as Autoregressive Moving Average
models (ARMA) used for stationary time series [12] (i.e. time series whose prop-
erties do not depend on the time at which the series is observed), or Autoregres-
sive Integrated Moving Average models (ARIMA) preferred for nonstationary
time series [13,14].

By exploiting a sliding window on the input data clustering methods have
been applied for anomaly detection on time series, such as K-Means clustering
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[15], DBSCAN [16] and Local Outlier Factor (LOF) [17]. Also machine learning
based approaches have been employed such as Isolation Forest [18] and One-
Class Support Vector Machine [19]. All these techniques rely on a dissimilarity
criterion to identify anomalies.

With the advent of Deep Learning (DL), several algorithms have been applied
to time series to identify anomalies. The results highlight that DL approaches
overcome the difficulties of the more classical techniques [11]. Since time series
data are related to a temporal context, the Recurrent Neural Networks (RNNs)
[20] is one of the most widely used approaches. Due to the vanishing or exploding
gradient problem that limits the ability of the network to model long temporal
relationships between data, two variants are preferred, Long-Short Term Memory
(LSTM) [21] and Gated Recurrent Unit (GRU) [22]. RNN-based techniques are
used in two different ways for anomaly detection. The first consists in the predic-
tion error criterion [23,24,25], and the second one is based on the reconstruction
error criterion [26,27,28]. CNN-based methods have also been applied to time
series analysis, despite they are not designed to identify temporal relationships
they still manage to extract meaningful information in the data sequences. The
methodologies applied to identify anomalies are, as for RNNs, based on the pre-
diction error [29,30] or the input reconstruction error [31].

Although some data sets with the consumption of household appliances have
been published, there are few works concerning anomaly detection in this field,
also due to the absence of labelled anomalous data acting as ground truth. In [32],
for example, the authors manually analysed and annotated potential anomalies
concerning the energy consumption of appliances in the REFIT data set [33];
in [34], instead, the authors have annotated the anomalies in the AMPds2 data
set [35] through an ensemble method and then have evaluated their LSTM-
autoencoder implementation.

In this paper, we compare the performance of nine different anomaly de-
tection techniques, summarized in Table 1, using a data set of fridge power
consumption samples.

Table 1. The AD techniques assessed in this paper and their anomaly identification
criterion.

Technique Anomaly Criterion
Local Outlier Factor (LOF) dissimilarity
One-Class SVM dissimilarity
Isolation Forest dissimilarity
CNN prediction error
GRU prediction error
LSTM prediction error
CNN-Autoencoder reconstruction error
GRU-Autoencoder reconstruction error
LSTM-Autoencoder reconstruction error
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3 Research Design

3.1 Experimental Data set

The CERTH data set represents the power consumption of a fridge in a household
over a 4 month period, from 10th July 2019 until 3rd November 2019. The data
were collected every minute, sampling in total 164,795 consumption values. The
raw data were then analyzed and resampled every 10 minutes to remove sensor
noise, obtaining the regular power consumption shown in Figure 1 and reducing
the total number of observations to 16,710.

To be able to evaluate and compare the performance of the different algo-
rithms, we have manually analyzed the data set and we have annotated all the
potential anomalies, by following the criterion used in [32]: data are flagged
anomalous if the appliance’s consumption has been found significantly different
from its historical normal consumption. This analysis of the data set revealed
two recurrent anomalous behaviors:

– An instant increment in power consumption (point anomaly).
– A continuous power consumption over time (contextual anomaly).

As shown in Figure 2, these potential anomalies can occur simultaneously.
For the evaluation, the data until the 30-09-2019 has been cleaned from the

anomalies and used for training, and the data from 01-10-2019 to 31-10-2019 has
been used for testing the performance of the different algorithms.

Table 2 summarizes the CERTH data set information, regarding the anoma-
lous data and the train-test split.

3.2 Methods and Algorithms

Based on the main criterion of anomaly identification, we implemented nine
different techniques:

Fig. 1. Fridge normal consumption pattern.
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Fig. 2. Fridge potential anomaly consumption.

Table 2. CERTH data set: data points and anomalies.

Total data Anomaly data % anomalies
Total 16710 1737 10.39%
Train set 10460 not needed not needed
Test set 4464 488 10.93%

Local Outlier Factor (LOF) clustering algorithm based on the identification
of the nearest neighbors and local outliers. We have used a sliding window size
of 10 and a k value of 400.

One-Class Support Vector Machine support vector machine used for nov-
elty detection. In the implementation we have used a sliding window length of
5, the RBF kernel with a gamma value of 0.001 and a nu value of 0.025.

Isolation Forest ensemble method that creates different binary trees isolating
data points. Anomaly points are more likely to be isolated and closer to the root
of an isolation tree. We have used a sliding window length of 5 and 100 trees in
the ensemble.

Convolutional Neural Networks mainly used for computer vision tasks.
We have used a window size length of 10, a convolutional block with a ReLU
activation function, with 2, 4, 8 filters and the kernel size of 2, a max pooling
layer and a fully connected layer with 50 neurons. The network has been trained
for 300 epochs with a 64 batch size.

Gated Recurrent Unit RNN variant network. We have used a sliding window
size of 10, 2 GRU layers with 8 hidden layers and a dropout of 0.2 respectively.
The network was trained for 300 epochs with a batch size of 64.
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Long Short Term Memory Networks RNN variant network. We have used
a sliding window size of 10, 2 LSTM layers with 8 hidden layers respectively and
a dropout of 0.2. The network was trained for 300 epochs with a batch size of
64.

CNN-autoencoder hybrid implementation with autoencoder and CNN net-
work. We used a sliding window size of 12 and, for the encoding-decoding phase
two convolutional block with 16 and 8 filters and a kernel size of 2. The network
has been trained for 300 epochs with a batch size of 64.

GRU-autoencoder hybrid implementation with autoencoder and GRU net-
work. We used a sliding window size of 10 and, for the encoding-decoding phase
two GRU layers with 16 and 8 hidden layers. The network has been trained for
300 epochs with a batch size of 64.

LSTM-autoencoder hybrid implementation with autoencoder and LSTM net-
work. We used a sliding window size of 10 and, for the encoding-decoding phase
two LSTM layers with 16 and 8 hidden layers. The network has been trained for
300 epochs with a batch size of 64.

3.3 Evaluation Metrics

In order to compare the implemented methods, we have evaluated them with the
most widely used machine learning metrics, based on the true positives (TP),
false positives (FP), false negatives (FN), and true negatives (TN): precision,
recall, F1 score, false alarm rate (FAR) and miss alarm rate (MAR).

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F1 = 2 ∗ precision ∗ recall
precision+ recall

(3)

FAR =
FP

FP + TN
(4)

MAR =
FN

FN + TP
(5)
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4 Results

Table 3 summarizes the results. The metrics described in the previous section
(i.e., precision, recall, F1 score) are used to compare the performances of the
tested algorithms. One-Class SVM and CNN have the highest precision (i.e.,
0.76) while GRU-Autoencoder has the lowest (i.e., 0.62). Local Outlier Factor
(LOF) showcases the highest recall (i.e., 0.92) and CNN-Autoencoder the lowest
(i.e., 0.58).

Moreover, Isolation Forest attains the highest F1 score (i.e., 0.78), while the
lowest one (i.e., 0.64) is achieved by CNN-Autoencoder. It may be observed that
precision is only moderately good for all the tested algorithms, varying from 0.62
to 0.76. On the contrary, recall exhibits better performances and ranges from
0.58 to 0.92. The F1 score performs similarly to the precision metrics. Table
3 highlights the best algorithm for each group based on the adopted anomaly
criterion.

From a quantitative evaluation standpoint, all the algorithms seem to achieve
comparable performances. But if we analyze their behavior from a qualitative
perspective, two observations emerge.

The first one is related to the CNN-Autoencoder, which has a high precision
compared to the other approaches based on input reconstruction, but has a recall
value rather low with respect to all the other algorithms. As shown in Figure 3,
this is due to the lack of identification of the anomaly in case the device stops
working (i.e. the power consumption is zero), which can be a problem especially
for household appliances such as the one analysed.

The second aspect refers to the overall performances of the implemented
methods, which achieve good results. However, they have been evaluated con-
sidering only each single labelled anomalous point separately, but, as shown in
Figure 4, all algorithms correctly identified almost all the time windows in which
the anomalies occur. The precise identification of the starting or ending point of
them is the main difference among the different techniques.

Table 3. Results summary of implemented methods. For each one is specified the
anomaly criterion (Dissimilarity, Prediction, Reconstruction).

Technique Miss Alarm
Rate

False Alarm
Rate Precision Recall F1 score

One-Class SVM (D) 0.24 0.03 0.76 0.76 0.76
Local Outlier Factor (D) 0.08 0.06 0.66 0.92 0.77
Isolation Forest (D) 0.16 0.04 0.73 0.84 0.78
CNN (P) 0.4 0.02 0.76 0.60 0.67
GRU (P) 0.38 0.03 0.73 0.62 0.67
LSTM (P) 0.38 0.03 0.73 0.62 0.67
CNN-Autoencoder (R) 0.42 0.03 0.72 0.58 0.64
GRU-Autoencoder (R) 0.17 0.06 0.62 0.81 0.70
LSTM-Autoencoder (R) 0.24 0.05 0.67 0.76 0.71
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Fig. 3. CNN-Autoencoder anomaly identification lack example. The green line refers
to the ground truth, while the red one to the model predictions.

Fig. 4. Qualitative overall performances. The green line refers to the ground truth,
while the red one to the model predictions. On the left are shown the Isolation Forest
anomaly predictions, while on the right the LSTM-Autoencoder ones.

5 Conclusion

The identification of anomalies focuses on recognizing unusual events/observa-
tions that deviate significantly from the rest of the data. Being able to recognize
non-standard device operation is seen as a significant responsibility in the energy
industry. AD in small-scale residential and industrial settings can benefit the in-
sight into the device health, the maintenance requirements, and the experienced
downtime and thus has the potential to reduce maintenance costs significantly.
Several alternative techniques have been proposed and evaluated for AD in a
variety of application contexts, also in the prescriptive maintenance scenario.

In this work, we applied alternative anomaly detection methods to data col-
lected from a fridge power usage in a real-world zero-energy building prototype.
We have implemented several machine and deep learning techniques and assessed
their respective performances using multiple metrics. The primary contribution
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of this study is to compare the extent at which the various approaches and al-
gorithms are capable of delivering high accuracy results for identifying device/-
machine/appliance faults. We obtained promising results with several methods,
among which Isolation Forest and LSTM-Autoencoder algorithms stand out.

Limitations of this work may be attributed to the fact that the evaluation of
methods and algorithms takes place utilizing a single appliance (fridge). Also,
the historical data of this device are limited to 4 months, something that may
have negative impact in the process of training the deep learning algorithms.
More data should be employed for a more thorough testing phase but also for
producing more reliable and generic results.

All in all, anomaly detection seeks to identify anomalous behavior in data ob-
servations or highlight data outliers. In terms of appliance or device maintenance
it seeks to identify non nominal operation generating prospects for preventing
various types of failure completely. In the future we aim to expand this work by
researching on the following points.

– Implement the described approach as a stand-alone component being able
to function with any data input. This will allow this work to be incorporated
as part of an analytics engine or any energy related framework [36].

– Continue tracking the state of the art in anomaly detection focusing on
maintenance for proactive buildings in the domain of households or small
industrial setups.

– Expand the evaluation phase with more data sets including small scale in-
dustrial units or household clusters containing more devices.
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