9,045 research outputs found
Thermal analysis comparison between two random glass fibre reinforced thermoplastic matrix composites bonded by adhesives using microwaves: preliminary results
[Abstract]: This paper compares the thermal analysis of two types of random glass fibre reinforced thermoplastic matrix composites joined by adhesives using microwave energy. Fixed frequency, 2.45 GHz, microwave facility is used to join thirty three percent by weight random glass fibre reinforced polystyrene composite [PS/GF (33%)] and thirty three percent by weight random glass fibre reinforced low density polyethylene composite [LDPE/GF (33%)]. The facility used is shown in Figure 1. With a given power level, the composites were exposed to various exposure times to microwave irradiation. The primer or coupling agent used was 5-minute two-part adhesive. The heat distribution of the samples of the two types of composites was analysed and compared. The relationship between the heat distribution and the lap shear strength of the samples was also compared and discussed
Pulsed THz radiation due to phonon-polariton effect in [110] ZnTe crystal
Pulsed terahertz (THz) radiation, generated through optical rectification
(OR) by exciting [110] ZnTe crystal with ultrafast optical pulses, typically
consists of only a few cycles of electromagnetic field oscillations with a
duration about a couple of picoseconds. However, it is possible, under
appropriate conditions, to generate a long damped oscillation tail (LDOT)
following the main cycles. The LDOT can last tens of picoseconds and its
Fourier transform shows a higher and narrower frequency peak than that of the
main pulse. We have demonstrated that the generation of the LDOT depends on
both the duration of the optical pulse and its central wavelength. Furthermore,
we have also performed theoretical calculations based upon the OR effect
coupled with the phonon-polariton mode of ZnTe and obtained theoretical THz
waveforms in good agreement with our experimental observation.Comment: 9 pages, 5 figure
An imaging gas scintillation proportional counter for the detection of subkiloelectron-volt X-rays
A large area imaging gas scintillation proportional counter (IGSPC) was constructed for use in X-ray astronomy. The IGSPC consists of a gas scintillation proportional counted (GSPC) with a micron polyprotylene window coupled to a multiwire proportional counter (MWPC) via a calcium fluoride window. Over a sensitive area of 21 cu cm the instrument has a measured energy resolution of 17.5% (FWHM) and 1.9 mm (FWHM) spatial resolution at 1.5 keV
EFFICIENCY OF ENERGY UTILIZATION OF VOLATILE FATTY ACIDS BY MATURE CATILE GIVEN A HAY OR HIGH-CONCENTRATE DIET
Rabi oscillations of a qubit coupled to a two-level system
The problem of Rabi oscillations in a qubit coupled to a fluctuator and in
contact with a heath bath is considered. A scheme is developed for taking into
account both phase and energy relaxation in a phenomenological way, while
taking full account of the quantum dynamics of the four-level system subject to
a driving AC field. Significant suppression of the Rabi oscillations is found
when the qubit and fluctuator are close to resonance. The effect of the
fluctuator state on the read-out signal is discussed. This effect is shown to
modify the observed signal significantly. This may be relevant to recent
experiments by Simmonds et al. [Phys. Rev. Lett. 93, 077003 (2004)].Comment: 4 pages, 4 figure
High-temperature phase transitions in SrBi_2Ta_2O_9 film: a study by THz spectroscopy
Time-domain THz transmission experiment was performed on a film deposited on sapphire substrate. Temperatures between 300
and 923 K were investigated and complex permittivity spectra of the film were
determined. The lowest frequency optic phonon near 28 cm reveals a slow
monotonic decrease in frequency on heating with no significant anomaly near the
phase transitions. We show that the dielectric anomaly near the ferroelectric
phase transition can be explained by slowing down of a relaxational mode,
observed in the THz spectra. A second harmonic generation signal observed in a
single crystal confirms a loss of center of symmetry in the ferroelectric phase
and a presence of polar clusters in the intermediate ferroelastic phase.Comment: subm. to J. Phys.: Condens. Matte
- …
