3,052 research outputs found
Nonlinear cross Gramians and gradient systems
We study the notion of cross Gramians for non-linear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that precisely correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Hankel operator are studied and yield promising results.
Unsupervised Domain Adaptation for 3D Keypoint Estimation via View Consistency
In this paper, we introduce a novel unsupervised domain adaptation technique
for the task of 3D keypoint prediction from a single depth scan or image. Our
key idea is to utilize the fact that predictions from different views of the
same or similar objects should be consistent with each other. Such view
consistency can provide effective regularization for keypoint prediction on
unlabeled instances. In addition, we introduce a geometric alignment term to
regularize predictions in the target domain. The resulting loss function can be
effectively optimized via alternating minimization. We demonstrate the
effectiveness of our approach on real datasets and present experimental results
showing that our approach is superior to state-of-the-art general-purpose
domain adaptation techniques.Comment: ECCV 201
Substitution induced pinning in MgB_2 superconductor doped with SiC nano-particles
By doping MgB_2 superconductor with SiC nano-particles, we have successfully
introduced pinning sites directly into the crystal lattice of MgB_2 grains
(intra-grain pinning). It became possible due to the combination of
counter-balanced Si and C co-substitution for B, leading to a large number of
intra-granular dislocations and the dispersed nano-size impurities induced by
the substitution. The magnetic field dependence of the critical current density
was significantly improved in a wide temperature range, whereas the transition
temperature in the sample MgB_2(SiC)_x having x = 0.34, the highest doping
level prepared, dropped only by 2.6 K.Comment: 4 pages, 6 figure
High quality factor copper inductors integrated in deep dry-etched quartz substrates
This paper reports on an inductor fabrication method capable to deliver high quality factor (Q) and high self-resonance frequency (SRF) devices using quartz insulating substrates and thick high-conductivity copper lines. Inductors are key devices in RF circuits that, when fabricated on traditional semiconductor substrates, suffer from poor RF performances due to thin metallization and substrate related losses. Many previous works revealed that RF performances are strongly dependent on the limited metallization thickness and on the conductivity of the substrate. In this paper we demonstrate a new fabrication process to improve the Q factor of spiral inductors by patterning thick high conductive metal layers directly in a dielectric substrate. Moreover, we develop and validate accurate equivalent circuit modeling and parameter extraction for the characterization of the fabricated device
Deep Autoencoder for Combined Human Pose Estimation and body Model Upscaling
We present a method for simultaneously estimating 3D human pose and body
shape from a sparse set of wide-baseline camera views. We train a symmetric
convolutional autoencoder with a dual loss that enforces learning of a latent
representation that encodes skeletal joint positions, and at the same time
learns a deep representation of volumetric body shape. We harness the latter to
up-scale input volumetric data by a factor of , whilst recovering a
3D estimate of joint positions with equal or greater accuracy than the state of
the art. Inference runs in real-time (25 fps) and has the potential for passive
human behaviour monitoring where there is a requirement for high fidelity
estimation of human body shape and pose
High quality factor copper inductors integrated in deep dry-etched quartz substrates
This paper reports on an inductor fabrication method capable to deliver high quality factor (Q) and high self-resonance frequency (SRF) devices using quartz insulating substrates and thick high-conductivity copper lines. Inductors are key devices in RF circuits that, when fabricated on traditional semiconductor substrates, suffer from poor RF performances due to thin metallization and substrate related losses. Many previous works revealed that RF performances are strongly dependent on the limited metallization thickness and on the conductivity of the substrate. In this paper we demonstrate a new fabrication process to improve the Q factor of spiral inductors by patterning thick high conductive metal layers directly in a dielectric substrate. Moreover, we develop and validate accurate equivalent circuit modeling and parameter extraction for the characterization of the fabricated device
- …
