50,913 research outputs found
The Mayflies (Ephemeroptera) of Tennessee, With a Review of the Possibly Threatened Species Occurring Within the State
One hundred and forty-three species of mayflies are reported from the state of Tennessee. Sixteen species (Ameletus cryptostimulus, Choroterpes basalis, Baetis virile, Ephemera blanda, E. simulans, Ephemerella berneri, Heterocloeon curiosum, H. petersi, Labiobaetis ephippiatus, Leptophlebia bradleyi, Macdunnoa brunnea, Paraleptophlebia assimilis, P. debilis, P. mollis, Rhithrogenia pellucida and Siphlonurus mirus) are reported for the first time. Rare and vulnerable species occurring in the state are also discussed. This represents the first comprehensive statewide list of mayflies for Tennessee
Post-operative cranial pressure monitoring system
System for monitoring of fluidic pressures in cranial cavity uses a miniaturized pressure sensing transducer, combined with suitable amplification means, a meter with scale calibrated in terms of pressures between minus 100 and plus 900 millimeters of water, and a miniaturized chart recorder covering similar range of pressures
A General SU(2) Formulation for Quantum Searching with Certainty
A general quantum search algorithm with arbitrary unitary transformations and
an arbitrary initial state is considered in this work. To serach a marked state
with certainty, we have derived, using an SU(2) representation: (1) the
matching condition relating the phase rotations in the algorithm, (2) a concise
formula for evaluating the required number of iterations for the search, and
(3) the final state after the search, with a phase angle in its amplitude of
unity modulus. Moreover, the optimal choices and modifications of the phase
angles in the Grover kernel is also studied.Comment: 8 pages, 2 figure
Non-destructive method for applying and removing instrumentation on helicopter rotor blades
A nondestructive method of applying and removing instrumentation on airfoils
Study of Permanent Magnet Focusing for Astronomical Camera Tubes
A design is developed of a permanent magnet assembly (PMA) useful as the magnetic focusing unit for the 35 and 70 mm (diagonal) format SEC tubes. Detailed PMA designs for both tubes are given, and all data on their magnetic configuration, size, weight, and structure of magnetic shields adequate to screen the camera tube from the earth's magnetic field are presented. A digital computer is used for the PMA design simulations, and the expected operational performance of the PMA is ascertained through the calculation of a series of photoelectron trajectories. A large volume where the magnetic field uniformity is greater than 0.5% appears obtainable, and the point spread function (PSF) and modulation transfer function(MTF) indicate nearly ideal performance. The MTF at 20 cycles per mm exceeds 90%. The weight and volume appear tractable for the large space telescope and ground based application
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This is due to the lack of rigorous mathematical models for conformal antenna arrays, and as a result the design of conformal arrays is primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. Herewith we shall extend this formulation for conformal arrays on large metallic cylinders. In this we develop the mathematical formulation. In particular we discuss the finite element equations, the shape elements, and the boundary integral evaluation, and it is shown how this formulation can be applied with minimal computation and memory requirements. The implementation shall be discussed in a later report
Propellant material compatibility program and results
The effects of long-term (up to 10 years) contact of inert materials with earth-storable propellants were studied for the purpose of designing chemical propulsion system components that can be used for current as well as future planetary spacecraft. The primary experimental work, and results to date are reported. Investigations include the following propellants: hydrazine, hydrazine-hydrazine nitrate blends, monomethyl-hydrazine, and nitrogen tetroxide. Materials include: aluminum alloys, corrosion-resistant steels, and titanium alloys. More than 700 test specimen capsules were placed in long-term storage testing at 43 C in the special material compatibility facility. Material ratings relative to the 10-year requirement have been assigned
Is U3Ni3Sn4 best described as near a quantum critical point?
Although most known non-Fermi liquid (NFL) materials are structurally or
chemically disordered, the role of this disorder remains unclear. In
particular, very few systems have been discovered that may be stoichiometric
and well ordered. To test whether U3Ni3Sn4 belongs in this latter class, we
present measurements of the x-ray absorption fine structure (XAFS) of
polycrystalline and single-crystal U3Ni3Sn4 samples that are consistent with no
measurable local structural disorder. We also present temperature-dependent
specific heat data in applied magnetic fields as high as 8 T that show features
that are inconsistent with the antiferromagnetic Griffiths' phase model, but do
support the conclusion that a Fermi liquid/NFL crossover temperature increases
with applied field. These results are inconsistent with theoretical
explanations that require strong disorder effects, but do support the view that
U3Ni3Sn4 is a stoichiometric, ordered material that exhibits NFL behavior, and
is best described as being near an antiferromagnetic quantum critical point.Comment: 9 pages, 8 figures, in press with PR
Creation of Entanglement between Two Electron Spins Induced by Many Spin Ensemble Excitations
We theoretically explore the possibility of creating spin entanglement by
simultaneously coupling two electronic spins to a nuclear ensemble. By
microscopically modeling the spin ensemble with a single mode boson field, we
use the time-dependent Fr\"{o}hlich transformation (TDFT) method developed most
recently [Yong Li, C. Bruder, and C. P. Sun, Phys. Rev. A \textbf{75}, 032302
(2007)] to calculate the effective coupling between the two spins. Our
investigation shows that the total system realizes a solid state based
architecture for cavity QED. Exchanging such kind effective boson in a virtual
process can result in an effective interaction between two spins. It is
discovered that a maximum entangled state can be obtained when the velocity of
the electrons matches the initial distance between them in a suitable way.
Moreover, we also study how the number of collective excitations influences the
entanglement. It is shown that the larger the number of excitation is, the less
the two spins entangle each other.Comment: 8 pages, 4 figure
- …
