research

Creation of Entanglement between Two Electron Spins Induced by Many Spin Ensemble Excitations

Abstract

We theoretically explore the possibility of creating spin entanglement by simultaneously coupling two electronic spins to a nuclear ensemble. By microscopically modeling the spin ensemble with a single mode boson field, we use the time-dependent Fr\"{o}hlich transformation (TDFT) method developed most recently [Yong Li, C. Bruder, and C. P. Sun, Phys. Rev. A \textbf{75}, 032302 (2007)] to calculate the effective coupling between the two spins. Our investigation shows that the total system realizes a solid state based architecture for cavity QED. Exchanging such kind effective boson in a virtual process can result in an effective interaction between two spins. It is discovered that a maximum entangled state can be obtained when the velocity of the electrons matches the initial distance between them in a suitable way. Moreover, we also study how the number of collective excitations influences the entanglement. It is shown that the larger the number of excitation is, the less the two spins entangle each other.Comment: 8 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019