62,368 research outputs found

    Large amplitude flutter of a low aspect ratio panel at low supersonic speeds comparison of theory and experiment

    Get PDF
    Flutter boundaries, as well as flutter limit cycle amplitudes, frequencies and stresses were computed for a panel of length-width ratio 4.48 exposed to applied in-plane and transverse loads. The Mach number range was 1.1 to 1.4. The method used involved direct numerical integration of modal equations of motion derived from the nonlinear plate equations of von Karman, coupled with linearized potential flow aerodynamic theory. The flutter boundaries agreed reasonably well with experiment, except when the in-plane loading approached the buckling load. Structural damping had to be introduced, to produce frequencies comparable to the experimental values. Attempts to compute panel deflections or stress at a given point met with limited success. There is some evidence, however, that deflection and stress maxima can be estimated with somewhat greater accuracy

    Analysis of edge impact stresses in composite plates

    Get PDF
    The in-plane edge impact of composite plates, with or without a protection strip, is investigated. A computational analysis based on the Fast Fourier Transform technique is presented. The particular application of the present method is in the understanding of the foreign object damage problem of composite fan blades. The method is completely general and may be applied to the study of other stress wave propagation problems in a half space. Results indicate that for the protective strip to be effective in reducing impact stresses in the composite the thickness must be equal or greater than the impact contact dimension. Large interface shear stresses at the strip - composite boundary can be induced under impact

    Magnetic field splitting of the spin-resonance in CeCoIn5

    Full text link
    Neutron scattering in strong magnetic fields is used to show the spin-resonance in superconducting CeCoIn5 (Tc=2.3 K) is a doublet. The underdamped resonance (\hbar \Gamma=0.069 \pm 0.019 meV) Zeeman splits into two modes at E_{\pm}=\hbar \Omega_{0}\pm g\mu_{B} \mu_{0}H with g=0.96 \pm 0.05. A linear extrapolation of the lower peak reaches zero energy at 11.2 \pm 0.5 T, near the critical field for the incommensurate "Q-phase" indicating that the Q-phase is a bose condensate of spin excitons.Comment: 5 pages, 4 figure

    Metal-insulator (fermion-boson)-crossover origin of pseudogap phase of cuprates I: anomalous heat conductivity, insulator resistivity boundary, nonlinear entropy

    Full text link
    Among all experimental observations of cuprate physics, the metal-insulator-crossover (MIC), seen in the pseudogap (PG) region of the temperature-doping phase diagram of copper-oxides under a strong magnetic field, when the superconductivity is suppressed, is most likely the most intriguing one. Since it was expected that the PG-normal state for these materials, as for conventional superconductors, is conducting. This MIC, revealed in such phenomena as heat conductivity downturn, anomalous Lorentz ratio, insulator resistivity boundary, nonlinear entropy, resistivity temperature upturn, insulating ground state, nematicity- and stripe-phases and Fermi pockets, unambiguously indicates on the insulating normal state, from which the high-temperature superconductivity (HTS) appears. In the present work (article I), we discuss the MIC phenomena mentioned in the title of article. The second work (article II) will be devoted to discussion of other listed above MIC phenomena and also to interpretation of the recent observations in the hidden magnetic order and scanning tunneling microscopy (STM) experiments spin and charge fluctuations as the intra PG and HTS pair ones. We find that all these MIC (called in the literature as non-Fermi liquid) phenomena can be obtained within the Coulomb single boson and single fermion two liquid model, which we recently developed, and the MIC is a crossover of single fermions into those of single bosons. We show that this MIC originates from bosons of Coulomb two liquid model and fermions, whose origin is these bosons. At an increase of doping up to critical value or temperature up to PG boundary temperature, the boson system undegoes bosonic insulator - bosonic metal - fermionic metal transitions.Comment: 13 pages, 3 figure

    Low scale Seesaw model and Lepton Flavor Violating Rare B Decays

    Get PDF
    We study lepton flavor number violating rare B decays, bslh±llb \to s l_h^{\pm} l_l^{\mp}, in a seesaw model with low scale singlet Majorana neutrinos motivated by the resonant leptogenesis scenario. The branching ratios of inclusive decays bslh±llˉ b \to s l_h^{\pm} \bar{l_l}^{\mp} with two almost degenerate singlet neutrinos at TeV scale are investigated in detail. We find that there exists a class of seesaw model in which the branching fractions of bsτμ b \to s \tau \mu and τμγ\tau \to \mu \gamma can be as large as 101010^{-10} and 10910^{-9} within the reach of Super B factories, respectively, without being in conflict with neutrino mixings and mass squared difference of neutrinos from neutrino data, invisible decay width of ZZ and the present limit of Br(μeγ)Br(\mu \to e \gamma).Comment: 19 pages, 6 figure

    Cascade of Quantum Phase Transitions in Tunnel-Coupled Edge States

    Full text link
    We report on the cascade of quantum phase transitions exhibited by tunnel-coupled edge states across a quantum Hall line junction. We identify a series of quantum critical points between successive strong and weak tunneling regimes in the zero-bias conductance. Scaling analysis shows that the conductance near the critical magnetic fields BcB_{c} is a function of a single scaling argument BBcTκ|B-B_{c}|T^{-\kappa}, where the exponent κ=0.42\kappa = 0.42. This puzzling resemblance to a quantum Hall-insulator transition points to importance of interedge correlation between the coupled edge states.Comment: 4 pages, 3 figure

    Approximate 3-Dimensional Electrical Impedance Imaging

    Full text link
    We discuss a new approach to three-dimensional electrical impedance imaging based on a reduction of the information to be demanded from a reconstruction algorithm. Images are obtained from a single measurement by suitably simplifying the geometry of the measuring chamber and by restricting the nature of the object to be imaged and the information required from the image. In particular we seek to establish the existence or non-existence of a single object (or a small number of objects) in a homogeneous background and the location of the former in the (x,y)-plane defined by the measuring electrodes. Given in addition the conductivity of the object rough estimates of its position along the z-axis may be obtained. The approach may have practical applications.Comment: 12 pages, 4 figures, LaTeX, Appendix added and other minor change

    Spin-Peierls transition in TiPO4_4

    Full text link
    We investigated the magnetic and structural properties of the quasi-one dimensional 3d1d^1-quantum chain system TiPO4_4 (JJ \sim 965 K) by magnetic susceptibility, heat capacity, ESR, x-ray diffraction, NMR measurements, and by density functional calculations. TiPO4_4 undergoes two magnetostructural phase transitions, one at 111 K and the other at 74 K. Below 74 K, NMR detects two different 31^{31}P signals and the magnetic susceptibility vanishes, while DFT calculations evidence a bond alternation of the Ti...Ti distances within each chain. Thus, the 74 K phase transition is a spin-Peierls transition which evolves from an incommensurate phase existing between 111 K and 74 K.Comment: 4 pages, 3 figures, accepted by Phys. Rev. B as a Rapid Communicatio

    Neutrino Oscillations and Lepton Flavor Mixing

    Get PDF
    In view of the recent announcement on non-zero neutrino mass from Super-Kamiokande experiment, it would be very timely to investigate all the possible scenarios on masses and mixings of light neutrinos. Recently suggested mass matrix texture for the quark CKM mixing, which can be originated from the family permutation symmetry and its suitable breakings, is assumed for the neutrino mass matrix and determined by the four combinations of solar, atmospheric and LSND neutrino data and cosmological hot dark matter bound as input constraints. The charged-lepton mass matrix is assumed to be diagonal so that the neutrino mixing matrix can be identified directly as the lepton flavor mixing matrix and no CP invariance violation originates from the leptonic sector. The results favor hierarchical patterns for the neutrino masses, which follow from the case when either solar-atmospheric data or solar-HDM constraints are used.Comment: Latex, 9 page
    corecore