19,604 research outputs found
Equivalence of operator-splitting schemes for the integration of the Langevin equation
We investigate the equivalence of different operator-splitting schemes for
the integration of the Langevin equation. We consider a specific problem, so
called the directed percolation process, which can be extended to a wider class
of problems. We first give a compact mathematical description of the
operator-splitting method and introduce two typical splitting schemes that will
be useful in numerical studies. We show that the two schemes are essentially
equivalent through the map that turns out to be an automorphism. An associated
equivalent class of operator-splitting integrations is also defined by
generalizing the specified equivalence.Comment: 4 page
Metrological characterization of the pulsed Rb clock with optical detection
We report on the implementation and the metrological characterization of a
vapor-cell Rb frequency standard working in pulsed regime. The three main parts
that compose the clock, physics package, optics and electronics, are described
in detail in the paper. The prototype is designed and optimized to detect the
clock transition in the optical domain. Specifically, the reference atomic
transition, excited with a Ramsey scheme, is detected by observing the
interference pattern on a laser absorption signal.
\ The metrological analysis includes the observation and characterization of
the clock signal and the measurement of frequency stability and drift. In terms
of Allan deviation, the measured frequency stability results as low as
, being the averaging time, and
reaches the value of few units of for s, an
unprecedent achievement for a vapor cell clock. We discuss in the paper the
physical effects leading to this result with particular care to laser and
microwave noises transferred to the clock signal. The frequency drift, probably
related to the temperature, stays below per day, and no evidence of
flicker floor is observed.
\ We also mention some possible improvements that in principle would lead to
a clock stability below the level at 1 s and to a drift of few units
of per day
Role of defects in the electronic properties of amorphous/crystalline Si interface
The mechanism determining the band alignment of the amorphous/crystalline
Si heterostructures is addressed with direct atomistic simulations of the
interface performed using a hierarchical combination of various computational
schemes ranging from classical model-potential molecular dynamics to ab-initio
methods. We found that in coordination defect-free samples the band alignment
is almost vanishing and independent on interface details. In defect-rich
samples, instead, the band alignment is sizeably different with respect to the
defect-free case, but, remarkably, almost independent on the concentration of
defects. We rationalize these findings within the theory of semiconductor
interfaces.Comment: 4 pages in two-column format, 2 postscript figures include
Testing Magnetic Field Models for the Class 0 Protostar L1527
For the Class 0 protostar, L1527, we compare 131 polarization vectors from
SCUPOL/JCMT, SHARP/CSO and TADPOL/CARMA observations with the corresponding
model polarization vectors of four ideal-MHD, non-turbulent, cloud core
collapse models. These four models differ by their initial magnetic fields
before collapse; two initially have aligned fields (strong and weak) and two
initially have orthogonal fields (strong and weak) with respect to the rotation
axis of the L1527 core. Only the initial weak orthogonal field model produces
the observed circumstellar disk within L1527. This is a characteristic of
nearly all ideal-MHD, non-turbulent, core collapse models. In this paper we
test whether this weak orthogonal model also has the best agreement between its
magnetic field structure and that inferred from the polarimetry observations of
L1527. We found that this is not the case; based on the polarimetry
observations the most favored model of the four is the weak aligned model.
However, this model does not produce a circumstellar disk, so our result
implies that a non-turbulent, ideal-MHD global collapse model probably does not
represent the core collapse that has occurred in L1527. Our study also
illustrates the importance of using polarization vectors covering a large area
of a cloud core to determine the initial magnetic field orientation before
collapse; the inner core magnetic field structure can be highly altered by a
collapse and so measurements from this region alone can give unreliable
estimates of the initial field configuration before collapse.Comment: 43 pages, 9 figures, 4 tables. Accepted by the Astrophysical Journa
Mode identification in the high-amplitude {\delta} Scuti star V2367 Cyg
We report on a multi-site photometric campaign on the high-amplitude
Scuti star V2367 Cyg in order to determine the pulsation modes. We also used
high-dispersion spectroscopy to estimate the stellar parameters and projected
rotational velocity. Time series multicolour photometry was obtained during a
98-d interval from five different sites. These data were used together with
model atmospheres and non-adiabatic pulsation models to identify the spherical
harmonic degree of the three independent frequencies of highest amplitude as
well as the first two harmonics of the dominant mode. This was accomplished by
matching the observed relative light amplitudes and phases in different
wavebands with those computed by the models. In general, our results support
the assumed mode identifications in a previous analysis of Kepler data.Comment: 9 pages, 5 figures, 4 tables. Accepted for publication in MNRA
Unquenched large orbital magnetic moment in NiO
Magnetic properties of NiO are investigated by incorporating the spin-orbit
interaction in the LSDA+U scheme. It is found that the large part of orbital
moment remains unquenched in NiO. The orbital moment contributes about mu_L =
0.29 mu_B to the total magnetic moment of M = 1.93 mu_B, as leads to the
orbital-to-spin angular momentum ratio of L/S = 0.36. The theoretical values
are in good agreement with recent magnetic X-ray scattering measurements.Comment: 4 pages, 2 figure
Charge and Orbital Ordering and Spin State Transition Driven by Structural Distortion in YBaCo_2O_5
We have investigated electronic structures of antiferromagnetic YBaCo_2O_5
using the local spin-density approximation (LSDA) + U method. The charge and
orbital ordered insulating ground state is correctly obtained with the strong
on-site Coulomb interaction. Co^{2+} and Co^{3+} ions are found to be in the
high spin (HS) and intermediate spin (IS) state, respectively. It is considered
that the tetragonal to orthorhombic structural transition is responsible for
the ordering phenomena and the spin states of Co ions. The large contribution
of the orbital moment to the total magnetic moment indicates that the
spin-orbit coupling is also important in YBaCo_2O_5.Comment: 4 pages including 4 figures, Submitted to Phys. Rev. Let
Kondo-like behaviors in magnetic and thermal properties of single crystal Tm5Si2Ge2
We grew the single crystal of stoichiometric Tm5Si2.0Ge2.0 using a Bridgeman
method and performed XRD, EDS, magnetization, ac and dc magnetic
susceptibilities, specific heat, electrical resistivity and XPS experiments. It
crystallizes in orthorhombic Sm5Ge4-type structure. The mean valence of Tm ions
in Tm5Si2.0Ge2.0 is almost trivalent. The 4f states is split by the crystalline
electric field. The ground state exhibits the long range antiferromagnetic
order with the ferromagnetically coupled magnetic moments in the ac plane below
8.01 K, while the exited states exhibit the reduction of magnetic moment and
magnetic entropy and -log T-behaviors observed in Kondo materials.Comment: 8 pages, 13 figure
Fractional ac Josephson effect in unconventional superconductors
For certain orientations of Josephson junctions between two p_x-wave or two
d-wave superconductors, the subgap Andreev bound states produce a 4pi-periodic
relation between the Josephson current I and the phase difference phi: I ~
sin(phi/2). Consequently, the ac Josephson current has the fractional frequency
eV/h, where V is the dc voltage. In the tunneling limit, the Josephson current
is proportional to the first power (not square) of the electron tunneling
amplitude. Thus, the Josephson current between unconventional superconductors
is carried by single electrons, rather than by Cooper pairs. The fractional ac
Josephson effect can be observed experimentally by measuring frequency spectrum
of microwave radiation from the junction.Comment: 8 pages, 3 figures, RevTEX 4; v2. - minor typos corrected in proof
- …
