33,874 research outputs found
Radiance and Doppler shift distributions across the network of the quiet Sun
The radiance and Doppler-shift distributions across the solar network provide
observational constraints of two-dimensional modeling of transition-region
emission and flows in coronal funnels. Two different methods, dispersion plots
and average-profile studies, were applied to investigate these distributions.
In the dispersion plots, we divided the entire scanned region into a bright and
a dark part according to an image of Fe xii; we plotted intensities and Doppler
shifts in each bin as determined according to a filtered intensity of Si ii. We
also studied the difference in height variations of the magnetic field as
extrapolated from the MDI magnetogram, in and outside network. For the
average-profile study, we selected 74 individual cases and derived the average
profiles of intensities and Doppler shifts across the network. The dispersion
plots reveal that the intensities of Si ii and C iv increase from network
boundary to network center in both parts. However, the intensity of Ne viii
shows different trends, namely increasing in the bright part and decreasing in
the dark part. In both parts, the Doppler shift of C iv increases steadily from
internetwork to network center. The average-profile study reveals that the
intensities of the three lines all decline from the network center to
internetwork region. The binned intensities of Si ii and Ne viii have a good
correlation. We also find that the large blue shift of Ne viii does not
coincide with large red shift of C iv. Our results suggest that the network
structure is still prominent at the layer where Ne viii is formed in the quiet
Sun, and that the magnetic structures expand more strongly in the dark part
than in the bright part of this quiet Sun region.Comment: 10 pages,9 figure
Recommended from our members
Thermal stress-induced charge and structure heterogeneity in emerging cathode materials
Nickel-rich layered oxide cathode materials are attractive near-term candidates for boosting the energy density of next generation lithium-ion batteries. The practical implementation of these materials is, however, hindered by unsatisfactory capacity retention, poor thermal stability, and oxygen release as a consequence of structural decomposition, which may have serious safety consequences. The undesired side reactions are often exothermic, causing complicated electro-chemo-mechanical interplay at elevated temperatures. In this work, we explore the effects of thermal exposure on chemically delithiated LiNi0.8Mn0.1Co0.1O2 (NMC-811) at a practical state-of-charge (50% Li content) and an over-charged state (25% Li content). A systematic study using a suite of advanced synchrotron radiation characterization tools reveals the dynamics of thermal behavior of the charged NMC-811, which involves sophisticated structural and chemical evolution; e.g. lattice phase transformation, transition metal (TM) cation migration and valence change, and lithium redistribution. These intertwined processes exhibit a complex 3D spatial heterogeneity and, collectively, form a valence state gradient throughout the particles. Our study sheds light on the response of NMC-811 to elevated temperature and highlights the importance of the cathode's thermal robustness for battery performance and safety
Circuit QED and sudden phase switching in a superconducting qubit array
Superconducting qubits connected in an array can form quantum many-body
systems such as the quantum Ising model. By coupling the qubits to a
superconducting resonator, the combined system forms a circuit QED system.
Here, we study the nonlinear behavior in the many-body state of the qubit array
using a semiclassical approach. We show that sudden switchings as well as a
bistable regime between the ferromagnetic phase and the paramagnetic phase can
be observed in the qubit array. A superconducting circuit to implement this
system is presented with realistic parameters .Comment: 4 pages, 3 figures, submitted for publication
Integer quantum Hall effect and topological phase transitions in silicene
We numerically investigate the effects of disorder on the quantum Hall effect
(QHE) and the quantum phase transitions in silicene based on a lattice model.
It is shown that for a clean sample, silicene exhibits an unconventional QHE
near the band center, with plateaus developing at and
a conventional QHE near the band edges. In the presence of disorder, the Hall
plateaus can be destroyed through the float-up of extended levels toward the
band center, in which higher plateaus disappear first. However, the center
Hall plateau is more sensitive to disorder and disappears at a
relatively weak disorder strength. Moreover, the combination of an electric
field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase
transitions from a topological insulator to a band insulator at the charge
neutrality point (CNP), accompanied by additional quantum Hall conductivity
plateaus.Comment: 7 pages, 4 figure
High Stellar FUV/NUV Ratio and Oxygen Contents in the Atmospheres of Potentially Habitable Planets
Recent observations of several planet-hosting M dwarfs show that most have
FUV/NUV flux ratios 1000 times greater than that of the Sun. Here we show that
the atmospheric oxygen contents (O2 and O3) of potentially habitable planets in
this type of UV environment could be 2~3 orders of magnitude greater than those
of their counterparts around Sun-like stars as a result of decreased photolysis
of O3, H2O2, and HO2. Thus detectable levels of atmospheric oxygen, in
combination with the existence of H2O and CO2, may not be the most promising
biosignatures on planets around stars with high FUV/NUV ratios such as the
observed M dwarfs
Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO
Although the rutile structure of TiO is stable at high temperatures, the
conventional quasiharmonic approximation predicts that several acoustic phonons
decrease anomalously to zero frequency with thermal expansion, incorrectly
predicting a structural collapse at temperatures well below 1000\,K. Inelastic
neutron scattering was used to measure the temperature dependence of the phonon
density of states (DOS) of rutile TiO from 300 to 1373\,K. Surprisingly,
these anomalous acoustic phonons were found to increase in frequency with
temperature. First-principles calculations showed that with lattice expansion,
the potentials for the anomalous acoustic phonons transform from quadratic to
quartic, stabilizing the rutile phase at high temperatures. In these modes, the
vibrational displacements of adjacent Ti and O atoms cause variations in
hybridization of electrons of Ti and electrons of O atoms. With
thermal expansion, the energy variation in this "phonon-tracked hybridization"
flattens the bottom of the interatomic potential well between Ti and O atoms,
and induces a quarticity in the phonon potential.Comment: 7 pages, 6 figures, supplemental material (3 figures
Path Integral Quantization of the Symplectic Leaves of the SU(2)* Poisson-Lie Group
The Feynman path integral is used to quantize the symplectic leaves of the
Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of
U_q(su(2)). This is achieved by finding explicit Darboux coordinates and then
using a phase space path integral. I discuss the *-structure of SU(2)* and give
a detailed description of its leaves using various parametrizations and also
compare the results with the path integral quantization of spin.Comment: 24 pages, LaTeX, no figures, full postscript available from
http://phyweb.lbl.gov/theorygroup/papers/40890.p
- …
