24,840 research outputs found
Mathematical model investigation of long-term transport of ocean-dumped sewage sludge related to remote sensing
An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, horizontal diffusion coefficients, particle size distributions, and specific gravities. The results presented are a quantitative description of the fate of a negatively buoyant sewage sludge plume resulting from continuous and instantaneous barge releases. Concentrations of the sludge near the surface were compared qualitatively with those remotely sensed. Laboratory study was performed to investigate the behavior of sewage sludge dumping in various ambient density conditions
Distance-two labelings of digraphs
For positive integers , an -labeling of a digraph is a
function from into the set of nonnegative integers such that
if is adjacent to in and if
is of distant two to in . Elements of the image of are called
labels. The -labeling problem is to determine the
-number of a digraph , which
is the minimum of the maximum label used in an -labeling of . This
paper studies - numbers of digraphs. In particular, we
determine - numbers of digraphs whose longest dipath is of
length at most 2, and -numbers of ditrees having dipaths
of length 4. We also give bounds for -numbers of bipartite
digraphs whose longest dipath is of length 3. Finally, we present a linear-time
algorithm for determining -numbers of ditrees whose
longest dipath is of length 3.Comment: 12 pages; presented in SIAM Coference on Discrete Mathematics, June
13-16, 2004, Loews Vanderbilt Plaza Hotel, Nashville, TN, US
S-OGSA as a Reference Architecture for OntoGrid and for the Semantic Grid
The Grid aims to support secure, flexible and coordinated resource sharing through providing a middleware platform for advanced distributing computing. Consequently, the Grid’s infrastructural machinery aims to allow collections of any kind of resources—computing, storage, data sets, digital libraries, scientific instruments, people, etc—to easily form Virtual Organisations (VOs) that cross organisational boundaries in order to work together to solve a problem. A Grid depends on understanding the available resources, their capabilities, how to assemble them and how to best exploit them. Thus Grid middleware and the Grid applications they support thrive on the metadata that describes resources in all their forms, the VOs, the policies that drive then and so on, together with the knowledge to apply that metadata intelligently
SiGe HBT X-Band LNAs for Ultra-Low-Noise Cryogenic Receivers
We report results on the cryogenic operation of two
different monolithic X-band silicon-germanium (SiGe) heterojunction bipolar transistor low noise amplifiers (LNAs) implemented in a commercially-available 130 nm SiGe BiCMOS platform. These SiGe LNAs exhibit a dramatic reduction in noise temperature with cooling, yielding Teff of less than 21 K (0.3 dB noise figure) across X-band at a 15 K operating temperature. To the authors’ knowledge, these SiGe LNAs exhibit the lowest broadband noise of any
Si-based LNA reported to date
The Megamaser Cosmology Project. X. High Resolution Maps and Mass Constraint for SMBHs
We present high resolution (sub-mas) VLBI maps of nuclear H2O megamasers for
seven galaxies. In UGC6093, the well-aligned systemic masers and high-velocity
masers originate in an edge-on, flat disk and we determine the mass of the
central SMBH to be M_SMBH = 2.58*10^7Msun(+-7%). For J1346+5228, the
distribution of masers is consistent with a disk, but the faint high-velocity
masers are only marginally detected, and we constrain the mass of the SMBH to
be in the range 1.5-2.0*10^7Msun. The origin of the masers in Mrk1210 is less
clear, as the systemic and high-velocity masers are misaligned and show a
disorganized velocity structure. We present one possible model in which the
masers originate in a tilted, warped disk, but we do not rule out the
possibility of other explanations including outflow masers. In NGC6926, we
detect a set of redshifted masers, clustered within a pc of each other, and a
single blueshifted maser about 4.4pc away, an offset that would be unusually
large for a maser disk system. Nevertheless, if it is a disk system, we
estimate the enclosed mass to be M_SMBH<4.8*10^7 Msun . For NGC5793, we detect
redshifted masers spaced about 1.4pc from a clustered set of blueshifted
features. The orientation of the structure supports a disk scenario as
suggested by Hagiwara et al.(2001). We estimate the enclosed mass to be M
SMBH<1.3*10^7 Msun. For NGC2824 and J0350-0127, the masers may be associated
with pc or sub-pc scale jets or outflows.Comment: Accepted by Ap
Ritual Perayaan Imlek Etnis Tionghoa Di Kota Toli-toli
Penduduk Tiongkok telah lama menyebar ke berbagai belahan dunia, dengan membawa berbagai macam kebudayaan serta tradisi, tidak terkecuali di Indonesia. Etnis tionghoa menyebar dengan merata di seluruh Indonesia dengan membawa kebudayaan asal mereka. Hari raya Imlek adalah salah satu contohnya, setiap daerah di Indonesia mempunyai perayaan Imlek mereka sendiri oleh karena itu penulis tertarik untuk meneliti perayaan etnis Tionghoa di kota Toli-toli. Penelitian ini meliputi apa perbedaan Imlek etnis Tionghoa Toli-toli pada masa orde baru dan mengapa terjadi perbedaan itu. Setelah dilakukan penelitian ditemukan bahwa etnis Tionghoa hanya merayakan chuxi, Imlek, hari kedua, hari kesembilan, dan Cap Go Meh. Perayaan Cap Go Meh di kota Toli-toli cenderung sepi dan tidak ada yang spesial. Serta ditemukan faktor yang membuat Imlek di kota Toli-toli saat orde baru dan sekarang berbeda yaitu karena faktor politik dan ekonomi
Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS missions at CDAAC
This study investigates the noise level and mission-to-mission stability of Global Positioning System (GPS) radio occultation (RO) neutral atmospheric bending angle data at the UCAR COSMIC Data Analysis and Archive Center (CDAAC). Data are used from two independently developed RO instruments currently flying in orbit on the FORMOSAT-3/COSMIC (F3C) and Metop/GRAS (GNSS Receiver for Atmospheric Sounding) missions. The F3C 50 Hz RO data are post-processed with a single-difference excess atmospheric phase algorithm, and the Metop/GRAS 50 Hz closed loop and raw sampling (down-sampled from 1000 Hz to 50 Hz) data are processed with a zero-difference algorithm. The standard deviations of the F3C and Metop/GRAS bending angles from climatology between 60 and 80 km altitude from June–December 2009 are approximately 1.78 and 1.13 μrad, respectively. The F3C standard deviation reduces significantly to 1.44 μrad when single-difference processing uses GPS satellites on the same side of the spacecraft. The higher noise level for F3C bending angles can be explained by additional noise from the reference link phase data that are required with single-difference processing. The F3C and Metop/GRAS mean bending angles differences relative to climatology during the same six month period are statistically significant and have values of &minus;0.05 and &minus;0.02 μrad, respectively. A comparison of ~13 500 collocated F3C and Metop/GRAS bending angle profiles over this six month period shows a similar mean difference of ~0.02 &plusmn; 0.02 μrad between 30 and 60 km impact heights that is marginally significant. The observed mean difference between the F3C and Metop/GRAS bending angles of ~0.02–0.03 μrad is quite small and illustrates the high degree of re-produceability and mission independence of the GPS RO data at high altitudes. Collocated bending angles between two F3C satellites from early in the mission differ on average by up to 0.5% near the surface due to systematically lower signal-to-noise ratio for one of the satellites. Results from F3C and Metop/GRAS differences in the lower troposphere suggest the Metop/GRAS bending angles are negatively biased compared to F3C with a maximum of several percents near the surface in tropical regions. This bias is related to different tracking depths (deeper in F3C) and data gaps in Metop/GRAS which make it impossible to process the data from both missions in exactly the same way
- …
