194,870 research outputs found

    High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase

    Full text link
    In this paper the evolution of a quantum system drived by a non-Hermitian Hamiltonian depending on slowly-changing parameters is studied by building an universal high-order adiabatic approximation(HOAA) method with Berry's phase ,which is valid for either the Hermitian or the non-Hermitian cases. This method can be regarded as a non-trivial generalization of the HOAA method for closed quantum system presented by this author before. In a general situation, the probabilities of adiabatic decay and non-adiabatic transitions are explicitly obtained for the evolution of the non-Hermitian quantum system. It is also shown that the non-Hermitian analog of the Berry's phase factor for the non-Hermitian case just enjoys the holonomy structure of the dual linear bundle over the parameter manifold. The non-Hermitian evolution of the generalized forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page

    Calculation of turbulent shear stress in supersonic boundary layer flows

    Get PDF
    An analysis of turbulent boundary layer flow characteristics and the computational procedure used are discussed. The integrated mass and momentum flux profiles and differentials of the integral quantities are used in the computations so that local evaluation of the streamwise velocity gradient is not necessary. The computed results are compared with measured shear stress data obtained by using hot wire anemometer and laser velocimeter techniques. The flow measurements were made upstream and downstream of an adiabatic unseparated interaction of an oblique shock wave with the turbulent boundary layer on the flat wall of a two dimensional wind tunnel. A comparison of the numerical analysis and actual measurements is made and the effects of small differences in mean flow profiles on the computed shear stress distributions are discussed

    A quantum solution to Gibbs Paradox with few particles

    Full text link
    We present a fully quantum solution to the Gibbs paradox (GP) with an illustration based on a gedanken experiment with two particles trapped in an infinite potential well. The well is divided into two cells by a solid wall, which could be removed for mixing the particles. For the initial thermal state with correct two-particle wavefunction according to their quantum statistics, the exact calculations shows the entropy changes are the same for boson, fermion and non-identical particles. With the observation that the initial unmixed state of identical particles in the conventional presentations actually is not of a thermal equilibrium, our analysis reveals the quantum origin of the paradox, and confirm the E. J. Jaynes' observation that entropy increase in Gibbs mixing is only due to the including more observables measuring the entropy. To further show up the subtle role of the quantum mechanism in the GP, we study the different finite size effect on the entropy change and shows the works performed in the mixing process are different for various types of particle.Comment: 4 pages, 3 figures + Supplementary Materia

    Calculation of turbulent shear stress in supersonic boundary layer flows

    Get PDF
    Turbulent shear stress distributions for supersonic boundary layer flows have been computed from experimental mean boundary layer data. The computations have been made by numerically integrating the time averaged continuity and streamwise momentum equations. Distributions have been obtained for flows upstream and downstream of shock-wave-boundary layer interactions and for both two-dimensional and axisymmetric flows. The computed results are compared with recently reported shear stress measurements which were obtained by hot wire anemometer and laser velocimeter techniques

    Localization of Relative-Position of Two Atoms Induced by Spontaneous Emission

    Full text link
    We revisit the back-action of emitted photons on the motion of the relative position of two cold atoms. We show that photon recoil resulting from the spontaneous emission can induce the localization of the relative position of the two atoms through the entanglement between the spatial motion of individual atoms and their emitted photons. The result provides a more realistic model for the analysis of the environment-induced localization of a macroscopic object.Comment: 8 pages and 4 figure

    Quantum decoherence of excitons in a leaky cavity with quasimode

    Get PDF
    For the excitons in the quantum well placed within a leaky cavity, the quantum decoherence of a mesoscopically superposed states is investigated based on the factorization theory for quantum dissipation. It is found that the coherence of the exciton superposition states will decrease in an oscillating form when the cavity field interacting with the exciton is of the form of quasimode. The effect of the thermal cavity fields on the quantum decoherence of the superposition states of the exciton is studied and it is observed that the higher the temperature of the environment is, the shorter the decoherence characteristic time is.Comment: 1 figure, 7 page
    corecore