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CALCULATION OF TURBULENT SHEAR STRESS IN SUPERSONIC
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Turbulent shear étress distributions for supersenic boundary layer
flows have been computed from experimental mean boundary layer data. The
computations nave been made Ey numerically infegrating the time averaged
continuity and streamwise momentum equations. The computaticnal method

is different from those previously reported in that integratcd mass and
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momentum flux profiles and differentials of these integral quantities
are used in the computations so that local evaluation of the streamvise
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between the computed and- the measured results. The computed values of
shear stress are quite sensitive to rather small differences in the mean
flow properties of the boundary layer, indicating that exceptionally
accurate mean flow data are required if reliable shear stress distribu-
tions are to be obtained from the mean data. Computations have alsc been
made of eddy viscosity and mixing length distributions. These are

compared with results based on the direct measurements of shear stress.



SYMBOLS
a = a constant, see Eq. (lBi
C _ constant in Law of the Wall (usually egquals 5.1)
Cf = skin friction coefficient
K = g constant, see Eq. (13)
k = g constant, see Eq. (18)
[ = mixing length, see Eq. (17}
M = Mach number
P = pressure
r = distance normal to centerline
= radius of the duct
Tij = total stress tensor
u = time averaged velocity in primary flow direction
u* = (uelclfz) arc sin (01/2 u/ue)
u = friction velocity (ijpw)lfz'
v = time averaged velocity normzl to centerline
X = distance parallel to centerline »
y = R-r
Y = ratlo of specific heat (1.4 for present study)
8 - = boundary layer thickness |
£ = eddy viscosity |
u = molecular viscosity
n = Yfﬁ
II = coefficient of wake function, see Eq. (13)

o = time averaged density



g = [(v—l)/?.mg/ {1+ [(y-1)/2] M2}

T = shear stress

Subscripts

1

e boundary layer edge condition

w wall condition

free stream condition

g
#

Superscript

<( )'>= time averaged fluctuation value



I. INTRODUCTION

In the study of supersonic turbulent boundary layer flow the
turbulent shear stress distribution has always been of great impertance
and interest, The direct measurement of the turbulent shear stress is,
however, quite difficult. A natural alternative is to compute the shear
from experimental mean flow data by numerically integrating the momentum
equation. Such computations have been performed in recent studies by
ﬁushnell and Mbrrisl, Horstman and Owenz, and SturekB. Since directly
measured data with which to compare thg computed results were not avall-
able, it was not possible to check the validity of the computations nor
of simplifying assﬁmptions made in conmection with the computations.

Rgcently, some turbulent shear stress data measured directly
by using hot wire anemometer and laser velocimeter techniques have been
reported by Rose and Johnsona’s. The measurements were made upstream
and downstream of an adiabatic unseparated interactiop of an oblique
shocklwave with the turbulent boundary layer on the flat wall of a two-
dimensional, M_ = 2.9 wind tunnel. The shock wave was generated by a 7°
ﬁedge. The turbulence data obtained from the two independent systems of
measurement were In reasonably pgood agreement, indicating that the data
should be reliable. |

In another study by R.ose6 of the interaction of a conical shock
ﬁave with a turbulent-boundary layer on the wall section of an
axisymmetric wind tunnel, a hot wire anemometer has been used to make
measurements of the turbulent shear stress and other turbulence quantities,

The flow was adilabatic. For both of these investigations the turbulent
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shear stress distributions at stations upstream and downstream of the
shock wave-boundarf layer interaction have been computed from the mean
flow pitot pressure profiles obtained in the studies. Eddy viscosity
and mixing length distributions have also been computed for the two
flows. For the two-dimensional interaction investigated by Rose and

Johnson »>

» computed results show reasonably good agreement with the
results obtained by direct measurement. For the axisymmetric flow
studied by R.ose6 computed and measured results show good agreement

upstream of the interaction but differ considerably at the downstream

station.

II. BASIC EQUATIONS AND BOUNDARY CONDITIONS
The time-averaged eqﬁations for the conservation of mass and
momentum for steady compressible turbulent boundary layer flow in an

axisymmetric channel are, respectively,

2 Oty 19 13 o>y = '

gx(pu)+ax<pu>+rr3r (rpv) + Z 5= (x <p'v'>) = 0 (1)
and
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ax (pu?) f r 3r (reuv) = ax + 9x Txx + T or Trx (2)
where

Txx = (Tv)xx - (p<u'®> + 2u <p'u'>) . (3)

T = (tv)rx - (p <u'v'> + u <p'v'> + v <ptu'>) (4)

with Ty representing the viscous stress,



1f we assume that |v <ptu’>| << {p <u'v'>| and I.;;t.<p'u'>| << | '3%{ (pu)| and -
transform to an x-y coordinate system the continuity and momentum equations

may be combined and integrated in a directlon normal to the surface to
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9 .
C 5 dpeue § dr n pu2
and =L+ & 22420 | E—an
2 2 dx 2 dx R dx 2
pu p u S pu
e e e e e e
28 46 82 Q?e} “-nrp“ an
R ax 2n  dx 2
peueR o Pele

e )

. S
@8 8dr 8 Peer u M ou
dx " R dx PaYe dx u



PRPEL I T N “"e“e>_u_ "y
R dx o uw R dx u P u N
e e e o e e

e ox o peue ue R 3x peue
F— M ey @B gy g, (8)
2 o0x 80X X
OeueR o

Equation (8) becomes applicable to two-dimensional flow as R + w,

The neormal stress, Txx’ which appears in equation.(S), is not known
from mean prcfile data. If its effect is to be considered in the computa—
tions, it is necessary then to make assumptions regarding its magnitude,
In earlier studies, and for most of the results to be discussed here? the
streamwise gradient of Txx has been neglected. However, by agsigning
arbitrary values to the Txx derivative, its effect on the computed results
nay be examined. This has been done in one instance as will be discussed
in the section on results.

Knowledge is also required of the static pressure distribution in the
boundary layer. In many studies of supersonic boundary layer flow no
attempt is made to measure the static pressure variation nermal to the
wall, even though, for some adverse pressure gradient flows, the wvariation
may, in fact, be rather large. In most instances the static pressure at
the boundary layer edge may be determined with confidence. If this is done,
the normal pressure variation may then be represented in approximate
fashion by assuming a linear distribution between the wall static pressure

and the pressure at the houndary layer edge, i.e.,
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Examinationvof equation (8) shows that an accurate value of boundary
layer growth rate is very important for the calculétion of the shear
stress, However, precise determination of the boundary layer thickness
from experimental mean data is difficult. It is even more difficult to
evaluate the boundary layer growth rate accurately. This problem may be
avoided by using the condition that the shear stress diminishes to zero

at the boundary layer edge and solving equation (8) for dé/dx:
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In equation (10} a linear pressure variation normal to the wall has been
assumed. |

1f the streamwise gradient of the normal stress is ignored and if the
flow is assumed to be locally similar so that the nondimensional boundary
layer properties u/ue and p/p_ are functicns of n enly, equation {8)

reduces to
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Equation (11) is identical to the expression used by Bushnell and Morrisl
in their computations of turbulent shear stress.

Before solving for the shear stress from either equation (8) or (11}
it is also necessary to know the coefficlient oﬁ skin friction. This may
be obtained by using the wall-wake velocity profile proposed by 5Sun and
Childs7. The wall-wake velocity profile for isoenergetic flow may be

written as

a. 1/2
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As has been reported in Reference 7, the use of a = 1 in equations {13) and
(14) results in a profile which provides a good representation of the

boundary layer velocity distribution, The method of least-squares may be
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used to fit the wall~waké profile to the experimental mean velocity pro-
files to provides values of Cf andrto'provide a smoothed representation
of the mean velocity distribution.

The eddy Qiscosity and mixing length distributions are also of great
interest in the study of turbulent boundary layer flow. In terms of the
shear stress as computed from mean flow data, the eddy viscosity may’be

written as

e .. L (- aula'y) (16)

ueﬁ ueé p du/dy

and the mixing length as

2 _ 1 - a{l/az 1/2 : 17
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In the region close to the wall the mixing length may be approximated by
L = ky (18}

where Kk is a constant,

In terms of turbulence measurements the eddy viscosity may be expressed as

£ 1.,,-<u'v'>
= () ( (19)
u 6 u s du/ oy
and the mixing length as
L1 =<u'v'x (172
5 6 (su/ay)? (207

A comparison of eddy viscosity and mixing length values as determined from
turbulence measurements and from mean flow shear stress comwputations is

given in the section on results.
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III.  RESULTS

A computer program has been develqped to carry out the required
numerical calculations. In carrying out the computations for the flow
downstream of the shock wave-boundary layer interactions, the departure
from local similarity has been taken into account. For purposes of
comparison, however, computations based on local similarity have also been
made. The effect of static pressure variation normal to the wall has also
been-considered for the downgtream stations by assuming a linear variation
in pressure. In these computations the static pressure at the boundary
layer edge has been computed from the free stream total pressure and pitot
pressure, with appropriate allowance made for the loss in total pressure
across the shock system. As was mentioned in the previous section, the
nean velocity profiles may be smoothed by using a least squares fit of the
wall~wake velocity profile to the experimental profiles. Computations have
been made for both smoothed and unsmoothed profiles. The integration
process for the smoothed data should he more accurate because it is possible
to use smaller step sizes. On the othér hand, the shear stress éomputed
from the smoothed profiles is valid only if the wall-wake profile provides
a good representation of the actual velocity distribution.

In obtaining the density and velocity profiles from the pitot pressure
profiles for the investigation by Rose and Johnsona’s, the total temfera~
ture was assumed to be constant across the boundary layer. In the axisym-
metric study by Rose6 total temperature measurements were available. TFor
this case calculations of the shear stress distributions were made for both
the measured total temperatuie distribution and for a constant total tem~

perature.. The results differed from each other only slightly.
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Figure 1 shows shear stress distributions computed for an upstream,
(x = 5.375 cm) station in Johnson's and Rose's investigation, along with
their shear stress data from the hot-wire anemometer and the laser
velocimeter measurements. The computed shear values which are shown
have been obtained from equation (ll)land auxiliary equation (12), i.e.,
under the assumﬁtion of local similarity. As is shown the calculated
results agree quite well over much éf the boundary layer, with the meas-
ured results obtained with the laser velocimeter. The differences between
-the calculated results and the hot-wire results are greater. For both
the hot-wire and laser velocimeter measurements the peak values of shear
stress are seen to occur substantially farther from the wall than is
observed for the calculated distributions. Also shown in the figure are
values of the wall shear stress as determined by a least squares fit of
the wali—wake profile to the mean data and as measured by a Preston tube.
The agreement between the two shear stress values is good.

The wall-wake profile as given by egquation {13) can be reduced to

8 if T is taken to be

a profile proposed earlier by Maise.® and McDonald
equal to 5.0 and if a - =, TFor purposes of comparison, the Maise-
McDonald profile has been used to compute shear stress values. As is
shown, this results in shear values which are substantially lower than
those obtained with a = i in equation (13) or with the unsmoothed data.
Computations have also been carried out for the data of Rose and
‘Johnson for a station downstream of the shock wave-boundary layer inter-
action (x = 9.375 cm}. Several sets of computations have been made from

the mean data. In one set local similarity has been assumed. Equations

{11) and (12) have then been used to carry out computations for both
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wall-wake smoothed profile and a profile as measured. In other computations
local similarity of profiles has not been assumed. For these cases re-
sults have been obtained for both smoothed and unsmcotﬁed profiles and both
linear and constant static pressure distribution across the boundary layer.
The results are shown in Figures 2 and 3. Figure 2 shows that the meas-
ured shear stress values obtained by the two experimental techmiques are
in quite good agreement. These in turn agree reasonably well with
the computed values obtained by using smoothed nonsimilar profiles and the
assumption of a linear pressure vafiation across the boundary layer. There
is considerable difference between the results for the smoothed and un-
smoothed profiles with the peak shear stress value for the unsmoothed pro-
file occurring lower in the boundary layer. As was stated earlier, the
numerical integraticn process should be more accurate for the smoothed
profiles. On the other hand, the results obtained from the wall-wake
profiles are valid only if the profiles provide accurate representations
of the actual velocity distributions. A comparison of the computed.
- velocity distributions with the corresponding wall-wake profiles is shown
in Figure 4. The differences between the two are small, pointing to the
gsensitivity of the computed shear stress values to small velocity differ-
ences.

As is shown in Figure 3, the results obtained under the assumption
of local similarity are markedly different from those determined when
similarity is not assumed. The peak shear sgress levels computed assuming
local similarity are less than half the values computed when similarity
is not assumed. Furthermore, the shapes of the shear stress distribution

curves are quite different. These results occur even though the differences
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between profiles at two closely spaced statiqns are small. Figure 5.
shows comparisons of density and velocity profiles from Rose's and
Johnson's stu&y for streamwise statlons located approximately one boundary
layer thickness apart. Although the profiles appear at first glance to be
quite similar, strik;ng differences are found for the computed shear
. 8tress distributioﬁs. | |

In the investigation by Rose6 of an adizbatic axisymmetric shock
wave~boundary layer interaction the free stream flow was nominally at M = 4
and the shock wave was generated by a 9-degree half-angle cone pladed at
zero angle of attack on the centerline of the 5.28 cm diameter tunnel. The
shock strength was jusﬁ below that required to produce boundary layer
separation. For this flow a substantial adverse pressure gradient existed
downstream of the interaction. As was stated earlier, the ﬁurbulence data
were obtained with a hot-wire anemometer. |

Figure 6 shows results for a station upstream of the interaction
where there was nc pressure gradient. The shear stress distribution has
been computed from mean velocity and density profiles under the assumption
bf local similarity and constant static pressure across the boundary layer.
As is shown, reascnably good agreement between computed and measured shear
stress values is obtained, although the differences observed for the Rose—
Johnson["5 data are found to exist here as well, That is, the hot-wire
anemometer results show higher levels than the ;;mputed values in the outer
part of the boundary layer, and the peak value of the computed shear stress
is much closer to the wall than was found to be the case from the direct

measurements. !
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Figure 7 shows results for a station (at x = 10.16 cm) downstream of
the interaction. As was the case with the Rose-Johnson investigation,
several sets of computations have been made from the mean data. For all
the results shown tﬁe assumption of a linear static pressure variation
across the boundary 1a§er has been assumed. Results have been obtained
for both smoothed and unsmoothed profiles, and computations have been
carried out for both local similarity and nonsimilarity of velocity and
density profiles. In addition, allowance has been made in one set of
calculations for the streamwise gradient of the normal stress, BTxxlax.
Johnson and Rose found in their study of the two-dimensional interaction
that this gradient was small and no allowance was made for it in the compu-
tations. However, for the axisymmetric flow Rose reported that stream-

. wise normal stress gradieﬁt reached levels as high as 30 percent of_the
local streamwise pressure gradient. The distribution of normal stress
”gradient as reported by Rose may be represenfe& approximately by

Ty P .,
5 0.3 55 sin® nm (21)

Computations have been made assuming the distribution given by equation
(21).

As is shown in Figure 7, the difference between the measurad ahd
computed shear stress values is substantial. The peak value of the meas-
ured shear stress is about twice the peak value computed when local simi-
larity is not assumed. As was true for the downstream station in the Rose-

Johnson study, peak levels of the computed shear stress are seen to occur
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coﬁéiderably closer to the wall than is observed in the measurements. It
has not yet been possible to determine the causes for the rather large
differences between the peak levels of the computed and measured shear
stress distributions. Additional hot-wire studies are underway for the
axisymmetric flow, as are attempts to improve upon the computational
techniques.

As was the case for the dowﬁstream station in the Rose-Johnson »3
investigation, the assumption of local similarity leads to shear stress
levels which are én the order of only one-half those determined when
similarity is not assumed., As is shown in Figure 7, consideration of the
streamwise normal stress gradient in the computations results in shear
stress levels which differ only very slightly from those obtained when
the gradient is ignored.

It should be pointed out that Rpses, in obtaining his downstream.
data, moved the cone along the a#is of the tumnnel and obtained the pitot
measurements at a fixed axial station. The question arises, then, of
how the computed shear stress distriﬁﬁtions_would compare with those
obfained if the cone had been kept at one station and the pitot tube had
been traversed axially. As a check on this, data were examined from a
study by Seebaugh9 in which the éone was held fixed and the probe was
translated. Seebaugh's study was conducted in a 5.16 cm diameter round
tunnel with a free-stream Mach number of 3.78. He used a 10-degree half-
angle cone. The results are shown in Figure 8. As is apparent, the shear
stress distributions are quite comparable to those oﬁtained from Rose's

mean flow data.
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The distributions oi eddy viscosity and mixing length for the invesg=
tigations under consideratien are shown in Figures 9-12. The results,
of course, reflect the differences betﬁeen the measured and computed
values of shear stress as discussed earlier. Computed results are shown
for beth smoothed and unsmoothed profiles. For the stations upstream of
the shock wave-boundary layer interactions the shear stress distributrions
used in eobtaining the values of eddy viscosity and mixing length have
been determined under the assumption of local similarity. For the down-—
stream stations, the lack of 1Dcal.similarity‘in the velocity and
density profiles has been taken into account and é linear static pressure
variation across the houndary layer has been assumed.

The eddy viscosity distributions for the Rose-Johnson investigation
are shown in Figure 9. Near the wall moderately good agreement is
observed between eddy viscoslitles based on computed shear siress vilues
and those based on measurements., From y/8 = 0.2 outward, however, the
differences become substantial. The values based on experimental shear
stress show considerable scatter as do those based on the point-by-point
mean data. In contrast the results based ;u the wall-wake smoothed
velocity profile are smooth, as would be expected. |

The mixing length distributions fer the Rose—Johnson4’5 investigation
are shown in Figure 10. Near the wall the values of mixing length are
described reasconably well by the relatiﬁnship % = 0.4y. From y/6 = 0,2
outward a certain amount of scatter in the results is apparent. For the
upstream station (x = 5,375 cm), however, the cemputed distribution based
on the wall-wake profile agrees with the results based on turbulence meas-—

urements reasonably well. For the downstream station (x = 9.375 cm) the
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values of &/6 based on the wall-wake profi;e are consistently higher than
those based on the turbulence measurements or on the unsmoothed mean data.

The eddy viscosity distributions for the axisymmetric flows studied
by Rose6 and by Seebaughg are shown in Figure 11. As is shown the
results based on the shear stresses computed from the mean flow data of
Rose and Seebaugh are in good agreement. The values based on Rose's
hot-wire anemometer measurements are much higher, consistent with the
higher shear stresses which he repor;ed.

Mixing length distributions for the downstream stations in Rose's
and Seebaugh's investigations are shown in Figure 12, along with the
results based on Rose's hot-wire anemometer measurements. Again the
results agree well with the expression & = 0.4y for the region near the
wall. This is in contrast to the result reported by Sturek3 who ceoncluded
for adverse pressure gradient flow &L = 0.65y appeared to fit his data near
the wall. Sturek‘é studies were conducted for flow along a compression
surface. The computed values of mixing length, &/§, in the plateau
region are considerably different for the two-dimensional flow and the
axisymmetric flows. Upstream of the shock wave interaction, the value is
about 0.07 for axisymmetric flow while the value is about 0.12 for the
two—dimensiénal flow. The computed values downstream of the interaction
are .somewhat higher than those upstream for both the two-dimensional and

axisvmmetric flows.
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1v, CONCLUSIONS

A method of computing shear stress distribution from experimental
mean profile data in compressible turbulent boundary layer flow has been
developed. The method is different from those previously reported in
that integrated mass and momentum flux profiles and differentials of
these integral quantiries are used in the computations so that local
evaluation of the streamwise velocity gradient is not necesgsary. The
method has been found te vield results which are in reasonably good agree-—
ment with directly measured turbulence data for two-dimensional adiabatic
boundary layer flow in the regions upstream and downstream of an oblique
shock wave interaction. The computed results are very sensitive to the
accuracy of the numerical integrations required in the computational
procedure and to the mean property distributions in the boundary layer.
The assumption of local similarity may canse large exyvors in computed
 shear stress values for flows subjected to pressure gradients, even'thcugh
adjacent profiles of the mean properties appear to be guite similar.
The shear stress levels are quite sengitive to the statie pressure dis-
tribution normal to the wall. The effect of the streamwise gradient of the
normal stress on the computed results is small and apparently may be
neglected. The value of the constant k in the expression £ = ky for
the mixing length in the region near the wall remains close to 0.4 for
adverse pressure gradient flows along a flat surface. In view of the
rather substantial differences between results based on mean flow measure-—
ments and those based on turbulence measurements in an axisymmetric

adverse pressure gradient flow, further study of this flow is needed.
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Figure 1. Turbulent shear stress distribution upstream
.0f a shock wave-boundary laver interaction,
two~-dimensional tunnel [4]

Figure 2. Turbulent shear stress distribution
downstream of a shock wave-boundary
layer interaction, two~dimensional
tunnel [5]

Figure 3. Effect of static pressure distribution and
self~gimilarity on shear stress distribution
in a turbulent boundary layer downstream of
a shock wave interaction [5]

Figure 4. Velocity profiles and wall-wake representations
dovnstream of a shock wave~boundary laver
interaction [5]

Figure 5. Density and velocity profiles downstream of a
sheoelk wave-bouyndary laver interaction [8]

Figure 6. Turbulent shear stress distribution upstreanm
of a shock wave-boundary layer interaction,
axisymmetric tunnel [6]

Figure 7. Turbulent shear stress distribution downstreanm
of a shock wave boundary layer interaction,
axisymmetric tunnel [6]

Fipgure 8. Turbulent shear stress distribution downstream
of a shock wave~boundary layver interaction,
axisymmetric tunnel ([9]

Figure 9. Eddy viscosity distribution for the two-dimensional
flow of Rose and Johnson [4,5]
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Figure 10. Mixing length distribution for the two-dimensional
flow of Rose and Johnson [4,5]

Figure 11. Eddy viscosity distributiocns for the
axisymmetric fiows of Rose [6] and
Secbaugh [9]

Figure 12. Mixing length distributions for the
axisymmetric flows of Rose {6] and
Seebaugh [9]

’
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2.0 Measured - [- p<u'v'>/peu§] x 103
O  laser velocimeter [4]

A - hot-wire anemometer [4]

cm
=
wn
!

A Computed - [{(z - uaulay)/peu:] x 103

Ys

[0 mean data, eq. (11)

wall-wake presentation of mean

data, eq. (11)
1.0+

. o . s

Maise-Mchonald profile repre-~
sentation of mean data [8]
o &

O @-‘!’w computed from wall-wake profile

0.5 \ @—Tw measured with Preston Tube

&

[- p<u'v'>/o uZ] x 103, [(1 - wdu/8y) /o ull x 103



¥, cm

Measured - [- p<u'§'>/peui] x 103
O laser velocimeter [5]
2.5 F & hot-wire anemometer {51
Computed - [(1 ~ pau/”o‘y)/peuil x 103

(] mean data, linear static pressure distribution,

Eq. (8)
2.0 P |
-—— wall-wake representation of mean data, linear
5 static pressure distribution, Eq. (8)

( @— T computed from wall-wake profile
1.5 o
1.0
0-5 ™
L A rH 4 2

| - |

.0 0.5 1.0

[~ p{u'v'>/peu§] x 103, [(z - uau/ay)/peugl x 103



cm

¥,

7

Computed - [(tr - uau/By)/oeuil x 103

O

2.5 F A&

0.0

mean data, linear static pressure distribution

_Eq. (8) -

wall-wake representation of mean data, linear
static pressure distribution, Eq. (8)

mean data, oP/dy = 0, Eq. (8)

wall-wake representation of mean data, 3P/3y = O,
Eq. (8)

mean data, locally similar, linear static
pressure distribution

wall-wake representation, locally similar, linear
static pressure distribution

w computed from wall-wake profile

[(t - uaufay)/oeugl x 103
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1.0

0.5

A%

x = 8.105 cm

O measured data

_— wall-wake representation
x = 9,375 cm
/A measured data

———- wall-wake representation




y/é

1.0

0.5°

0.0

- x = 8.105 cm
N C velocity
] A density
x = 9.375 em
FAY velocity
A
o . density
. A&
D o
i @ &
I A o
d &
A &
i fra¥e
Iy 1 1 rﬂl L 4 L. ol
Ly
0.0 0.5~
U./Ues p/pe
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Measured - [- p<u'v'>/peu§] x 103
FAY hot-wire anemometer {6]
Computed ~ [{T ~ uau/ay)lpeugl x 103

0.4 O mean data, Eq. (11)

——  wall-wake representation of mean data, Eq. (11}

0.3 A @— T computed from wall-wake profile

y,cm

A

0.1

0.0 B
0.0 1.0 2.0 3.0 4.0

[- p<u'v'>/peui]x 103, [(t - u %)/peug]x 103



y,cm

0.4

0.3

- 0.2

0.1

0.0

3/

Measured - [- 0<u'v'>/peu§] x 103
A hot-wire anemometer [6]
Computed - [{t - u&u/&y}/peu:] x 103

(J mean data, Eq. (8)

wall-wake representation of mean data, Eq. (8)

A mean data, Eq. (8), considering normal stress gradient
—.— wall-wake representation of mean data, Eq. (8),
L— " considering normal stress gradient '
C mean data, Eq. (11)
FAN : :
—~———wall-wake representation of mean data, Eq. (11)
ok
:f @—— T computed from wall-wake representation
A
A
1 H 1
0.0 2 1.0 2.0 3.0 4.0

[- p<u'v'>/pep§_] x 103, [(¢ - uau/By)/p‘eui] x 103
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Computed ~ [(T - uB‘u/ay)fpeugl x 103
(] mean data, Eq. (8)

—— wall-wake representation of mean data, Eq. (8)

0.4 }
'®) mean data, Eq. (11)
——- wall-wake representation of mean data, Eq. (11)
003 _ :
5 @— T, computed from wall-wake representation
>

1 J

3.0 4.0

[(t ~ uBu/By)/peuE] x 103



(e/ueé) x 103

Eddy Viscosity based on measured shear stress
@ x = 5.375 cm, laser velocimeter [4]
O x = 9,375 cm, laser velocimeter [5]
'A x = 5,375 cm, hot-wire anemometer

A x = 9,375 cm, hot-wire anemometer

Eddy Viscosity based on computed shear stress
[ <] x = 5,375 cm, computed from mean data, Eq. (8)
0 x = 9,375 cm, computed from mean data, Eq. (8)

—— x = 5.375% cm, computed from wall-wake representation of
mean data, Eq. (8)

———- x = 9,375 cm; computed from wall-wake representation

8.0 r ‘ of mean data, Egq. (B)
_ o
AN
6.0 } s
- //’—_*\\
/ , N\ O
4.0 / 0 0‘ ?
b Ay o a0 N
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¥

Mixing Length based on measured shear stress

o x = 5.375 cm, laser velocimeter [4]
O x = 9,375 cm, laser velocimeter [5]
A x = 5.375 cm, hot-wire anemometer
A X = 9.375 cm, hot—wire anemometer

Mixing Length based on computed shear stress

-] x = 5.375 ¢m, computed from mean data, Eq. (8)
O x = 9.375 cm, computed from mean data, Eq. (8)
— X = 5.375 cm, computed from wall-wake representation
0.2 r~ of mean data, Eq. (8)
——— x = 9,375 cml, computed. from wall-wake representation

N " of mean data, Eq. (8)

0.1

y/é



(e/u_&) x 1073
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Eddy Viscosity based on measured shear stress
A x = 6.60 cm, hot-wire anemometer [6]

A x = 10.16 cm, hot-wire anemometer {6}

Eddy Viscosity based on computed shear stress
@® x = 6.60 cm, computed from mean data [6]

- x = 6.60 cm, computed from wall-wake representation .
of mean data

O  x = 10.16 cm, computed from mean data [6]

-—— x = 10.16 cm, computed from wall-wake representation
of mean data [6]

0 =x=9.62 e¢m, computed from mean data [9]
8.0 —-— % = 9,62 cm, computed from wall-wake representation
of mean data [9]
s A

6.0 |
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Mixing Length based on measured shear stress
A x = 6.60 cm, hot-wire anemometer [6]

A x = 10.60 cm, hot-wire anemometer [6]

Mixing Length based on computed shear stress

® x = 6.60 cm, computed from mean data [6]

— x = 6.60 cm, computed from wall-wake representation
< of mean data [6]

O x = 10.16 cm, computed from mean data [6]

- x = 10.16 cm, computed from wall-wake representation -
of mean data [6]

{0 x = 9.62 cm, computed from mean data [9]
—_—x = 9,62 cm, computed from wall-wake representation
0.2 r of mean data [9]
A
L Fa) @

0.1

v/6



