285 research outputs found

    The imprint of Southern Ocean overturning on seasonal water mass variability in Drake Passage

    Get PDF
    Seasonal changes in water mass properties are discussed in thermohaline coordinates from a seasonal climatology and repeat hydrographic sections. The SR1b CTD transects along Drake Passage are used as a case study. The amount of water within temperature and salinity classes and changes therein are used to estimate dia-thermal and dia-haline transformations. These transformations are considered in combination with climatologies of surface buoyancy flux to determine the relative contributions of surface buoyancy fluxes and subsurface mixing to changes in the distribution of water in thermohaline coordinates. The framework developed provides unique insights into the thermohaline circulation of the water masses that are present within Drake Passage, including the erosion of Antarctic Winter Water (AAWW) during the summer months and the interaction between the Circumpolar Deep Waters (CDW) and Antarctic Intermediate Water (AAIW). The results presented are consistent with summertime wind-driven inflation of the CDW layer and deflation of the AAIW layer, and with new AAIW produced in the winter as a mixture of CDW, remnant AAWW, and surface waters. This analysis therefore highlights the role of surface buoyancy fluxes in the Southern Ocean overturning

    The Flower : Christl Berg, Kit Hiller, Jo-Ellen Jackson, Anne MacDonald, Sally McGillivray, Janine Miller, Mary Scott

    Get PDF
    The Flower Catalogue of an exhibition organised by the Plimsoll Gallery Committee, University of Tasmania at Hobart Plimsoll Gallery ... October - November 15, 1992. Curator, Paul Zika ; essay by Llewellyn Negrin

    Water properties and bottom water patterns in hadal trench environments

    Get PDF
    We examine baseline water properties and bottom water patterns in hadal trench environments across the Southern Ocean, Indian Ocean, and western Pacific. Significant differences are identified in the South Fiji Basin and surrounding the Philippine Sea, primarily due to the movement of cold Lower Circumpolar Deep Water along topographic features, highlighting the importance of a trench's geospatial position. We present the first hydrographic profiles in the Java Trench, warranting further research. Salinity increases with increasing depth for profiles over 10 000 dbar, with potential causes including instrumentation error, internal mixing, and saline pore water expulsion. These hadopelagic variations are crucial for assessing climate change impacts, especially regarding Antarctic Bottom Water. The study underscores the importance of incorporating these adiabatic conditions to gain insights into ecological biodiversity, alongside the indispensable baseline conditions presented, which are crucial for future oceanographic research across multiple disciplines.</p

    High-latitude ocean ventilation and its role in Earth's climate transitions

    Get PDF
    The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered

    The thermodynamic balance of the Weddell Gyre

    Get PDF
    The thermodynamic balance of the Weddell Gyre is assessed from an inverse estimate of the circulation across the gyre's rim. The gyre experiences a weak net buoyancy gain that arises from a leading-order cancellation between two opposing contributions, linked to two cells of water mass transformation and diapycnal overturning. The lower cell involves a cooling-driven densification of 8.4 ± 2.0 Sv of Circumpolar Deep Water and Antarctic Bottom Water near the gyre's southern and western margins. The upper cell entails a freshening-driven conversion of 4.9 ± 2.0 Sv of Circumpolar Deep Water into lighter upper-ocean waters within the gyre interior. The distinct role of salinity between the two cells stems from opposing salinity changes induced by sea ice production, meteoric sources and admixture of fresh upper-ocean waters in the lower cell, which contrasts with coherent reductions in salinity associated with sea ice melting and meteoric sources in the upper cell

    Recent wind-driven variability in Atlantic water mass distribution and meridional overturning circulation

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 633-647, doi:10.1175/JPO-D-16-0089.1.Interannual variability in the volumetric water mass distribution within the North Atlantic Subtropical Gyre is described in relation to variability in the Atlantic meridional overturning circulation. The relative roles of diabatic and adiabatic processes in the volume and heat budgets of the subtropical gyre are investigated by projecting data into temperature coordinates as volumes of water using an Argo-based climatology and an ocean state estimate (ECCO version 4). This highlights that variations in the subtropical gyre volume budget are predominantly set by transport divergence in the gyre. A strong correlation between the volume anomaly due to transport divergence and the variability of both thermocline depth and Ekman pumping over the gyre suggests that wind-driven heave drives transport anomalies at the gyre boundaries. This wind-driven heaving contributes significantly to variations in the heat content of the gyre, as do anomalies in the air–sea fluxes. The analysis presented suggests that wind forcing plays an important role in driving interannual variability in the Atlantic meridional overturning circulation and that this variability can be unraveled from spatially distributed hydrographic observations using the framework presented here.DGE was supported by a Natural Environment Research Council studentship award at the University of Southampton. JMT’s contribution was supported by the U.S. National Science Foundation (Grant OCE-1332667). GF’s contribution was supported by the U.S. National Science Foundation through Grant OCE-0961713 and by the U.S. National Oceanic and Atmospheric Administration through Grant NA10OAR4310135. The contributions of JDZ and AJGN were supported by the NERC Grant ‘‘Climate scale analysis of air and water masses’’ (NE/ K012932/1). ACNG gratefully acknowledges support from the Leverhulme Trust, the Royal Society, and the Wolfson Foundation. LY was supported by NASA Ocean Vector Wind Science Team (OVWST) activities under Grant NNA10AO86G

    Zika virus: New clinical syndromes and its emergence in the western hemisphere

    Get PDF
    Zika virus (ZIKV) had remained a relatively obscure flavivirus until a recent series of outbreaks accompanied by unexpectedly severe clinical complications brought this virus into the spotlight as causing an infection of global public health concern. In this review, we discuss the history and epidemiology of ZIKV infection, recent outbreaks in Oceania and the emergence of ZIKV in the Western Hemisphere, newly ascribed complications of ZIKV infection, including Guillain-Barré syndrome and microcephaly, potential interactions between ZIKV and dengue virus, and the prospects for the development of antiviral agents and vaccines

    The cold transit of Southern Ocean upwelling

    Get PDF
    The upwelling of deep waters in the Southern Ocean is a critical component of the climate system. The time and zonal mean dynamics of this circulation describe the upwelling of Circumpolar Deep Water and the downwelling of Antarctic Intermediate Water. The thermodynamic drivers of the circulation and their seasonal cycle play a potentially key regulatory role. Here an observationally constrained ocean model and an observation‐based seasonal climatology are analyzed from a thermodynamic perspective, to assess the diabatic processes controlling overturning in the Southern Ocean. This reveals a seasonal two‐stage cold transit in the formation of intermediate water from upwelled deep water. First, relatively warm and saline deep water is transformed into colder and fresher near‐surface winter water via wintertime mixing. Second, winter water warms to form intermediate water through summertime surface heat fluxes. The mixing‐driven pathway from deep water to winter water follows mixing lines in thermohaline coordinates indicative of nonlinear processes

    Internal waves and turbulence in the Antarctic Circumpolar Current

    Get PDF
    Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 259–282, doi:10.1175/JPO-D-11-0194.1.This study reports on observations of turbulent dissipation and internal wave-scale flow properties in a standing meander of the Antarctic Circumpolar Current (ACC) north of the Kerguelen Plateau. The authors characterize the intensity and spatial distribution of the observed turbulent dissipation and the derived turbulent mixing, and consider underpinning mechanisms in the context of the internal wave field and the processes governing the waves’ generation and evolution. The turbulent dissipation rate and the derived diapycnal diffusivity are highly variable with systematic depth dependence. The dissipation rate is generally enhanced in the upper 1000–1500 m of the water column, and both the dissipation rate and diapycnal diffusivity are enhanced in some places near the seafloor, commonly in regions of rough topography and in the vicinity of strong bottom flows associated with the ACC jets. Turbulent dissipation is high in regions where internal wave energy is high, consistent with the idea that interior dissipation is related to a breaking internal wave field. Elevated turbulence occurs in association with downward-propagating near-inertial waves within 1–2 km of the surface, as well as with upward-propagating, relatively high-frequency waves within 1–2 km of the seafloor. While an interpretation of these near-bottom waves as lee waves generated by ACC jets flowing over small-scale topographic roughness is supported by the qualitative match between the spatial patterns in predicted lee wave radiation and observed near-bottom dissipation, the observed dissipation is found to be only a small percentage of the energy flux predicted by theory. The mismatch suggests an alternative fate to local dissipation for a significant fraction of the radiated energy.SW acknowledges the support of the Grantham Institute for Climate Change, Imperial College London. ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1). KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds.2013-08-0

    EBP1 and DRBP76/NF90 binding proteins are included in the major histocompatibility complex class II RNA operon

    Get PDF
    Major histocompatibility complex class II mRNAs encode heterodimeric proteins involved in the presentation of exogenous antigens during an immune response. Their 3′UTRs bind a protein complex in which we identified two factors: EBP1, an ErbB3 receptor-binding protein and DRBP76, a double-stranded RNA binding nuclear protein, also known as nuclear factor 90 (NF90). Both are well-characterized regulatory factors of several mRNA molecules processing. Using either EBP1 or DRBP76/NF90-specific knockdown experiments, we established that the two proteins play a role in regulating the expression of HLA-DRA, HLA-DRB1 and HLA-DQA1 mRNAs levels. Our study represents the first indication of the existence of a functional unit that includes different transcripts involved in the adaptive immune response. We propose that the concept of ‘RNA operon’ may be suitable for our system in which MHCII mRNAs are modulated via interaction of their 3′UTR with same proteins
    corecore