28 research outputs found

    Extreme enrichment of Se, Te, PGE and Au in Cu sulfide microdroplets: evidence from LA-ICP-MS analysis of sulfides in the Skaergaard Intrusion, east Greenland

    Get PDF
    The Platinova Reef, in the Skaergaard Intrusion, east Greenland, is an example of a magmatic Cu–PGE–Au sulfide deposit formed in the latter stages of magmatic differentiation. As is characteristic with such deposits, it contains a low volume of sulfide, displays peak metal offsets and is Cu rich but Ni poor. However, even for such deposits, the Platinova Reef contains extremely low volumes of sulfide and the highest Pd and Au tenor sulfides of any magmatic ore deposit. Here, we present the first LA-ICP-MS analyses of sulfide microdroplets from the Platinova Reef, which show that they have the highest Se concentrations (up to 1200 ppm) and lowest S/Se ratios (190–700) of any known magmatic sulfide deposit and have significant Te enrichment. In addition, where sulfide volume increases, there is a change from high Pd-tenor microdroplets trapped in situ to larger, low tenor sulfides. The transition between these two sulfide regimes is marked by sharp peaks in Au, and then Te concentration, followed by a wider peak in Se, which gradually decreases with height. Mineralogical evidence implies that there is no significant post-magmatic hydrothermal S loss and that the metal profiles are essentially a function of magmatic processes. We propose that to generate these extreme precious and semimetal contents, the sulfides must have formed from an anomalously metal-rich package of magma, possibly formed via the dissolution of a previously PGE-enriched sulfide. Other processes such as kinetic diffusion may have also occurred alongside this to produce the ultra-high tenors. The characteristic metal offset pattern observed is largely controlled by partitioning effects, producing offset peaks in the order Pt+Pd>Au>Te>Se>Cu that are entirely consistent with published D values. This study confirms that extreme enrichment in sulfide droplets can occur in closed-system layered intrusions in situ, but this will characteristically form ore deposits that are so low in sulfide that they do not conform to conventional deposit models for Cu–Ni–PGE sulfides which require very high R factors, and settling of sulfide liquids

    Capability of fs-LA-ICP-MS for sulfide analysis in comparison to ns-LA-ICP-MS: reduction of laser induced matrix effects?

    No full text
    We applied three different LA systems (213 nm nanosecond solid state, 193 nm nanosecond excimer, and 200 nm femtosecond laser) coupled to a quadrupole ICP-MS or a sector field ICP-MS, respectively, for the analysis of different sulfide minerals (pyrrhotite, chalcopyrite, and sphalerite). Ablation craters were investigated via back-scattered electron (BSE) images to compare the amounts of melt produced, and fractionation factors were calculated to determine the degree of down-hole fractionation. Our results show significant differences in melting between the three LA systems. While samples show massive melting when using the ns systems, no melting has been observed utilizing the fs laser. Fractionation factors for a variety of elemental pairs indicate the absence of down-hole fractionation even at the highest melt production. The extent of melting of different sulfide specimens is independent of melting temperatures of these materials. Although no down-hole fractionation has been observed, Fe/S fractionation as calculated from sensitivities deviate among pyrrhotite and chalcopyrite when applying the 193 nm ns and 200 nm fs systems. Analyses of synthetic pyrrhotite with known PGE concentrations using the 200 nm fs LA system yielded moderately precise and accurate concentration data (3-4%; 4-14% 2SD) utilizing sulfide as the external reference material. Application of NIST610 as the reference material improved the precision to 1.4-2.4% 2SD and the deviation from reference values to 5-7%

    Pyrite zoning as a record of mineralization in the ventersdorp contact reef, Witwatersrand Basin, South Africa

    No full text
    The Archean metasedimentary succession of the Witwatersrand basin, South Africa, hosts the largest Au deposit in the world. Gold mineralization is mostly concentrated in conglomerate horizons, or "reefs," and is tightly associated with pyrite. Trace element zoning of pyrite from the Ventersdorp Contact Reef, studied by X-ray elemental (As, Ni, Co, and Pb) maps, electron microprobe analysis, and laser ablation-inductively coupled plasma-mass spectrometry, indicates successive stages of pyrite formation, each characterized by different textures and trace element composition (As = 2.2 wt %, Ni = 1.37 wt %, Co = 1.98 wt %). Four generations have been distinguished: generation 1 is detrital and includes compact (nonporous), porous, and laminated pyrite; generations 2 to 4 are postsedimentary/authigenic. Generation 4 pyrite formed at near-peak metamorphic conditions (T = 270°-350°C, chlorite geothermometry). Porous and concentrically laminated pyrite grains (generation 1) are particularly enriched in Au (average 6.4 ppm, maximum 70 ppm), in addition to Sb, Tl, Pb, Mn, Mo, Cu, and Ag, in comparison with compact pyrite types of all generations. In these grains, Au, occurring as "invisible gold," and other trace elements might be finely dispersed with the phyllosilicates filling the pyrite pores. Trace element composition of porous and concentrically laminated pyrite is reminiscent of pyrite known to form in suboxic to anoxic environments (black shales). The presence of Au in detrital pyrite indicates an early introduction of Au in the Ventersdorp Contact Reef. Gold is also present as secondary inclusions of electrum associated with the last pyrite generation (generation 4), together with sphalerite, chalcopyrite, galena, and pyrrhotite. © 2013 Society of Economic Geologists, Inc

    The Niederschlag fluorite-(barite) deposit, Erzgebirge/Germany—a fluid inclusion and trace element study

    No full text
    The Niederschlag fluorite-barite vein deposit in the Western Erzgebirge, Germany, has been actively mined since 2013. We present the results of a first comprehensive study of the mineralogy, petrography, fluid inclusions, and trace element geochemistry of fluorite related to the Niederschlag deposit. Two different stages of fluorite mineralization are recognized. Stage I fluorite is older, fine-grained, associated with quartz, and forms complex breccia and replacement textures. Conversely, the younger Stage II fluorite is accompanied by barite and often occurs as banded and coarse crystalline open-space infill. Fluid inclusion and REY systematics are distinctly different for these two fluorite stages. Fluid inclusions in fluorite I reveal the presence of a low to medium saline (7–20% eq. w (NaCl+CaCl2)) fluid with homogenization temperatures of 140–180 °C, whereas fluorite II inclusions yield distinctly lower (80–120 °C) homogenization temperatures with at least two high salinity fluids involved (18–27% eq. w (NaCl+CaCl2)). In the absence of geochronological data, the genesis of the earlier generation of fluorite-quartz mineralization remains enigmatic but is tentatively related to Permian magmatism in the Erzgebirge. The younger fluorite-barite mineralization, on the other hand, has similarities to many fluorite-barite-Pb-Zn-Cu vein deposits in Europe that are widely accepted to be related to the Mesozoic opening of the northern Atlantic Ocean.European Social Fund http://dx.doi.org/10.13039/50110000489

    Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study

    No full text
    The key for understanding the trace metal inventory of currently explored VHMS deposits lies in the understanding of trace element distribution during the formation of these deposits on the seafloor. Recrystallization processes already occurring at the seafloor might liberate trace elements to later hydrothermal alteration and removement. To investigate the distribution and redistribution of trace elements we analyzed sulfide minerals from 27 black smoker samples derived from three different seafloor hydrothermal fields: the ultramafic-hosted Logatchev hydrothermal field on the Mid-Atlantic Ridge, the basaltic-hosted Turtle Pits field on the mid-atlantic ridge, and the felsic-hosted PACMANUS field in the Manus basin (Papua New Guinea). The sulfide samples were analyzed by mineral liberation analyser for the modal abundances of sulfide minerals, by electron microprobe for major elements and by laser ablation-inductively coupled plasma-mass spectrometry for As, Sb, Se, Te, and Au. The samples consist predominantly of chalcopyrite, sphalerite, pyrite, galena and minor isocubanite as well as inclusions of tetrahedrite–tennantite. Laser ablation spectra were used to evaluate the solubility limits of trace elements in different sulfide minerals at different textures. The solubility of As, Sb, and Au in pyrite decreases with increasing degree of recrystallization. When solubility limits are reached these elements occur as inclusions in the different sulfide phases or they are expelled from the mineral phase. Most ancient VHMS deposits represent felsic or bimodal felsic compositions. Samples from the felsic-hosted PACMANUS hydrothermal field at the Pual ridge (Papua New Guinea) show high concentrations of Pb, As, Sb, Bi, Hg, and Te, which is likely the result of an additional trace element contribution derived from magmatic volatiles. Co-precipitating pyrite and chalcopyrite are characterized by equal contents of Te, while chalcopyrite that replaced pyrite (presumably during black smoker growth) is enriched in Te relative to pyrite. These higher Te concentrations may be related to higher fluid temperature

    Nature

    No full text

    The Niederschlag fluorite-(barite) deposit, Erzgebirge/Germany—a fluid inclusion and trace element study

    No full text
    <jats:title>Abstract</jats:title><jats:p>The Niederschlag fluorite-barite vein deposit in the Western Erzgebirge, Germany, has been actively mined since 2013. We present the results of a first comprehensive study of the mineralogy, petrography, fluid inclusions, and trace element geochemistry of fluorite related to the Niederschlag deposit. Two different stages of fluorite mineralization are recognized. Stage I fluorite is older, fine-grained, associated with quartz, and forms complex breccia and replacement textures. Conversely, the younger Stage II fluorite is accompanied by barite and often occurs as banded and coarse crystalline open-space infill. Fluid inclusion and REY systematics are distinctly different for these two fluorite stages. Fluid inclusions in fluorite I reveal the presence of a low to medium saline (7–20% eq. w (NaCl+CaCl<jats:sub>2</jats:sub>)) fluid with homogenization temperatures of 140–180 °C, whereas fluorite II inclusions yield distinctly lower (80–120 °C) homogenization temperatures with at least two high salinity fluids involved (18–27% eq. w (NaCl+CaCl<jats:sub>2</jats:sub>)). In the absence of geochronological data, the genesis of the earlier generation of fluorite-quartz mineralization remains enigmatic but is tentatively related to Permian magmatism in the Erzgebirge. The younger fluorite-barite mineralization, on the other hand, has similarities to many fluorite-barite-Pb-Zn-Cu vein deposits in Europe that are widely accepted to be related to the Mesozoic opening of the northern Atlantic Ocean.</jats:p&gt

    Fluorite Mineralization Related to Carbonatitic Magmatism in the Western Transbaikalia: Insights from Fluid Inclusions and Trace Element Composition

    No full text
    Fluorite mineralization associated with different types of magmatism is common in the Western Transbaikalia. This study deals with Arshan, Yuzhnoe, and Ulan-Ude fluorite occurrences, which are the most significant examples of carbonatite-related fluorite mineralization in the region. The present paper focused on new fluorite geochemistry and fluid inclusion data, is aimed at revealing conditions of the fluorite mineralization formation, highlighting its genetic relationship with magmatism, compared to other deposits of this type. All the three locations belong to the Late Mesozoic Central Asian carbonatite province. Fluorites here are characterized by high rare earth elements (REE), Sr, and elevated La/Yb values. Fluid inclusions data imply that the formation of fluorite mineralization is a long process extending from late magmatic to the hydrothermal stage. Early fluorite crystallized from sulfate-carbonate orthomagmatic fluids at temperatures up to 500 °C. True hydrothermal fluorite was formed from the same fluids that were probably mixed with meteoric waters, which caused the temperature to drop to below 420 °C and led to an increase in the chloride component. The REE compositions of fluorite from the studied locations are similar to compositions of REE-rich fluorites from carbonatite-related deposits around the world

    Structure and evolution of the volcanic rift zone at São Lourenço peninsula, Madeira

    No full text
    Ponta de São Lourenço is the deeply eroded eastern end of Madeira’s east–west trending rift zone, located near the geometric intersection of the Madeira rift axis with that of the Desertas Islands to the southeast. It dominantly consists of basaltic pyroclastic deposits from Strombolian and phreatomagmatic eruptions, lava flows, and a dike swarm. Main differences compared to highly productive rift zones such as in Hawai’i are a lower dike intensity (50–60 dikes/km) and the lack of a shallow magma reservoir or summit caldera. 40Ar/39Ar age determinations show that volcanic activity at Ponta de São Lourenço lasted from >5.2 to 4 Ma (early Madeira rift phase) and from 2.4 to 0.9 Ma (late Madeira rift phase), with a hiatus dividing the stratigraphy into lower and upper units. Toward the east, the distribution of eruptive centers becomes diffuse, and the rift axis bends to parallel the Desertas ridge. The bending may have resulted from mutual gravitational influence of the Madeira and Desertas volcanic edifices. We propose that Ponta de São Lourenço represents a type example for the interior of a fading rift arm on oceanic volcanoes, with modern analogues being the terminations of the rift zones at La Palma and El Hierro (Canary Islands). There is no evidence for Ponta de São Lourenço representing a former central volcano that interconnected and fed the Madeira and Desertas rifts. Our results suggest a subdivision of volcanic rift zones into (1) a highly productive endmember characterized by a central volcano with a shallow magma chamber feeding one or more rift arms, and (2) a less productive endmember characterized by rifts fed from deep-seated magma reservoirs rather than from a central volcano, as is the case for Ponta de São Lourenço
    corecore