1,232 research outputs found
Muonium-antimuonium conversion in models with heavy neutrinos
We study muonium-antimuonium conversion and mu+ e- to mu- e+ scattering
within two different lepton-flavor-violating models with heavy neutrinos: model
I is a typical seesaw that violates lepton number as well as flavor; model II
has a neutrino mass texture where lepton number is conserved. We look for the
largest possible amplitudes of these processes that are consistent with current
bounds. We find that model I has very limited chance of providing an observable
signal, except if a finely tuned condition in parameter space occurs. Model II,
on the other hand, requires no fine tuning and could cause larger effects.
However, the maximum amplitude provided by this model is still two orders of
magnitude below the sensitivity of current experiments: one predicts an
effective coupling G_MM up to 10^{-4}G_F for heavy neutrino masses near 10 TeV.
We have also clarified some discrepancies in previous literature on this
subject.Comment: 16 pages, 4 figures, reference adde
Rigorous results on spontaneous symmetry breaking in a one-dimensional driven particle system
We study spontaneous symmetry breaking in a one-dimensional driven
two-species stochastic cellular automaton with parallel sublattice update and
open boundaries. The dynamics are symmetric with respect to interchange of
particles. Starting from an empty initial lattice, the system enters a symmetry
broken state after some time T_1 through an amplification loop of initial
fluctuations. It remains in the symmetry broken state for a time T_2 through a
traffic jam effect. Applying a simple martingale argument, we obtain rigorous
asymptotic estimates for the expected times ~ L ln(L) and ln() ~ L,
where L is the system size. The actual value of T_1 depends strongly on the
initial fluctuation in the amplification loop. Numerical simulations suggest
that T_2 is exponentially distributed with a mean that grows exponentially in
system size. For the phase transition line we argue and confirm by simulations
that the flipping time between sign changes of the difference of particle
numbers approaches an algebraic distribution as the system size tends to
infinity.Comment: 23 pages, 7 figure
Optical coherence tomography for bladder cancer - ready as a surrogate for optical biopsy? - Results of a prospective mono-centre study
<p>Abstract</p> <p>Introduction</p> <p>New modalities like Optical Coherence Tomography (OCT) allow non-invasive examination of the internal structure of biological tissue in vivo. The potential benefits and limitations of this new technology for the detection and evaluation of bladder cancer were examined in this study.</p> <p>Materials and methods</p> <p>Between January 2007 and January 2008, 52 patients who underwent transurethral bladder biopsy or TUR-BT for surveillance or due to initial suspicion of urothelial carcinoma of the bladder were enrolled in this study. In total, 166 lesions were suspicious for malignancy according to standard white light cystoscopy. All suspicious lesions were scanned and interpreted during perioperative cystoscopy using OCT. Cold cup biopsies and/or TUR-B was performed for all these lesions. For this study we used an OCT-device (Niris<sup>®</sup>, Imalux<sup>®</sup>, Cleveland, US), that utilizes near-infrared light guided through a flexible fibre-based applicator, which is placed into the bladder via the working channel of the cystoscope. The technology provides high spatial resolution on the order of about 10-20 μm, and a visualization of tissue to a depth of about 2 mm across a lateral span of about 2 mm in width. The device used received market clearance from the FDA and CE approval in Germany. The diagnostic and surgical procedure was videotaped and analyzed afterwards for definitive matching of scanned and biopsied lesion. The primary aim of this study was to determine the level of correlation between OCT interpretation and final histological result.</p> <p>Results</p> <p>Of 166 scanned OCT images, 102 lesions (61.4%) matched to the same site where the biopsy/TUR-BT was taken according to videoanalysis. Only these video-verified lesions were used for further analysis. Of all analyzed lesions 88 were benign (inflammation, edema, hyperplasia etc.) and 14 were malignant (CIS, Ta, T1, T2) as shown by final histo pathology.</p> <p>All 14 malignant lesions were detected correctly by OCT. Furthermore all invasive tumors were staged correctly by OCT regarding tumor growth beyond the lamina propria. There were no false negative lesions detected by OCT. Sensitivity of OCT for detecting the presence of a malignant lesion was 100% and sensitivity for detection of tumor growth beyond the lamina propria was 100% as well. Specificity of OCT for presence of malignancy was 65%, due to the fact that a number of lesions were interpreted as false positive by OCT.</p> <p>Conclusion</p> <p>As a minimally invasive technique, OCT proved to have extremely high sensitivity for detection of malignant lesions as well as estimation of whether a tumor has invaded beyond the lamina propria. However, specificity of OCT within the bladder was impaired (65%), possibly due to a learning curve and/or the relatively low spatial resolution and visualization depth of the OCT technology. Further studies and technical development are needed to establish an adequate surrogate for optical biopsy.</p
JulianA: An automatic treatment planning platform for intensity-modulated proton therapy and its application to intra- and extracerebral neoplasms
Creating high quality treatment plans is crucial for a successful
radiotherapy treatment. However, it demands substantial effort and special
training for dosimetrists. Existing automated treatment planning systems
typically require either an explicit prioritization of planning objectives,
human-assigned objective weights, large amounts of historic plans to train an
artificial intelligence or long planning times. Many of the existing
auto-planning tools are difficult to extend to new planning goals.
A new spot weight optimisation algorithm, called JulianA, was developed. The
algorithm minimises a scalar loss function that is built only based on the
prescribed dose to the tumour and organs at risk (OARs), but does not rely on
historic plans. The objective weights in the loss function have default values
that do not need to be changed for the patients in our dataset. The system is a
versatile tool for researchers and clinicians without specialised programming
skills. Extending it is as easy as adding an additional term to the loss
function. JulianA was validated on a dataset of 19 patients with intra- and
extracerebral neoplasms within the cranial region that had been treated at our
institute. For each patient, a reference plan which was delivered to the cancer
patient, was exported from our treatment database. Then JulianA created the
auto plan using the same beam arrangement. The reference and auto plans were
given to a blinded independent reviewer who assessed the acceptability of each
plan, ranked the plans and assigned the human-/machine-made labels.
The auto plans were considered acceptable in 16 out of 19 patients and at
least as good as the reference plan for 11 patients. Whether a plan was crafted
by a dosimetrist or JulianA was only recognised for 9 cases. The median time
for the spot weight optimisation is approx. 2 min (range: 0.5 min - 7 min)
Aspects of Cooling at the TRIP Facility
The TriP facility at KVI is dedicated to provide short lived radioactive
isotopes at low kinetic energies to users. It comprised different cooling
schemes for a variety of energy ranges, from GeV down to the neV scale. The
isotopes are produced using beam of the AGOR cyclotron at KVI. They are
separated from the primary beam by a magnetic separator. A crucial part of such
a facility is the ability to stop and extract isotopes into a low energy
beamline which guides them to the experiment. In particular we are
investigating stopping in matter and buffer gases. After the extraction the
isotopes can be stored in neutral atoms or ion traps for experiments. Our
research includes precision studies of nuclear -decay through
- momentum correlations as well as searches for permanent electric
dipole moments in heavy atomic systems like radium. Such experiments offer a
large potential for discovering new physics.Comment: COOL05 Workshop, Galena, Il, USA, 18-23. Sept. 2005, 5 pages, 3
figure
First Test of Lorentz Invariance in the Weak Decay of Polarized Nuclei
A new test of Lorentz invariance in the weak interactions has been made by
searching for variations in the decay rate of spin-polarized 20Na nuclei. This
test is unique to Gamow-Teller transitions, as was shown in the framework of a
recently developed theory that assumes a Lorentz symmetry breaking background
field of tensor nature. The nuclear spins were polarized in the up and down
direction, putting a limit on the amplitude of sidereal variations of the form
|(\Gamma_{up} - \Gamma_{down})| / (\Gamma_{up} + \Gamma_{down}) < 3 * 10^{-3}.
This measurement shows a possible route toward a more detailed testing of
Lorentz symmetry in weak interactions.Comment: 11 pages, 6 figure
Spontaneous Symmetry Breaking in a Non-Conserving Two-Species Driven Model
A two species particle model on an open chain with dynamics which is
non-conserving in the bulk is introduced. The dynamical rules which define the
model obey a symmetry between the two species. The model exhibits a rich
behavior which includes spontaneous symmetry breaking and localized shocks. The
phase diagram in several regions of parameter space is calculated within
mean-field approximation, and compared with Monte-Carlo simulations. In the
limit where fluctuations in the number of particles in the system are taken to
zero, an exact solution is obtained. We present and analyze a physical picture
which serves to explain the different phases of the model
Non-Standard Neutrino Interactions from a Triplet Seesaw Model
We investigate non-standard neutrino interactions (NSIs) in the triplet
seesaw model featuring non-trivial correlations between NSI parameters and
neutrino masses and mixing parameters. We show that sizable NSIs can be
generated as a consequence of a nearly degenerate neutrino mass spectrum. Thus,
these NSIs could lead to quite significant signals of lepton flavor violating
decays such as \mu^- \to e^- \nu_e anti\nu_\mu and \mu^+ \to e^+ anti\nu_e
\nu_\mu at a future neutrino factory, effects adding to the uncertainty in
determination of the Earth matter density profile, as well as characteristic
patterns of the doubly charged Higgs decays observable at the Large Hadron
Collider.Comment: 4 pages, 3 figures and 1 table; v2: minor corrections, Sect. IV
revise
Cold Collision Frequency Shift of the 1S-2S Transition in Hydrogen
We have observed the cold collision frequency shift of the 1S-2S transition
in trapped spin-polarized atomic hydrogen. We find , where is the sample density. From this
we derive the 1S-2S s-wave triplet scattering length, nm,
which is in fair agreement with a recent calculation. The shift provides a
valuable probe of the distribution of densities in a trapped sample.Comment: Accepted for publication in PRL, 9 pages, 4 PostScript figures,
ReVTeX. Updated connection of our measurement to theoretical wor
- …