JulianA: An automatic treatment planning platform for intensity-modulated proton therapy and its application to intra- and extracerebral neoplasms

Abstract

Creating high quality treatment plans is crucial for a successful radiotherapy treatment. However, it demands substantial effort and special training for dosimetrists. Existing automated treatment planning systems typically require either an explicit prioritization of planning objectives, human-assigned objective weights, large amounts of historic plans to train an artificial intelligence or long planning times. Many of the existing auto-planning tools are difficult to extend to new planning goals. A new spot weight optimisation algorithm, called JulianA, was developed. The algorithm minimises a scalar loss function that is built only based on the prescribed dose to the tumour and organs at risk (OARs), but does not rely on historic plans. The objective weights in the loss function have default values that do not need to be changed for the patients in our dataset. The system is a versatile tool for researchers and clinicians without specialised programming skills. Extending it is as easy as adding an additional term to the loss function. JulianA was validated on a dataset of 19 patients with intra- and extracerebral neoplasms within the cranial region that had been treated at our institute. For each patient, a reference plan which was delivered to the cancer patient, was exported from our treatment database. Then JulianA created the auto plan using the same beam arrangement. The reference and auto plans were given to a blinded independent reviewer who assessed the acceptability of each plan, ranked the plans and assigned the human-/machine-made labels. The auto plans were considered acceptable in 16 out of 19 patients and at least as good as the reference plan for 11 patients. Whether a plan was crafted by a dosimetrist or JulianA was only recognised for 9 cases. The median time for the spot weight optimisation is approx. 2 min (range: 0.5 min - 7 min)

    Similar works

    Full text

    thumbnail-image

    Available Versions