44 research outputs found

    Cortical topography of intracortical inhibition influences the speed of decision making

    Get PDF
    The neocortex contains orderly topographic maps; however, their functional role remains controversial. Theoretical studies have suggested a role in minimizing computational costs, whereas empirical studies have focused on spatial localization. Using a tactile multiple-choice reaction time (RT) task before and after the induction of perceptual learning through repetitive sensory stimulation, we extend the framework of cortical topographies by demonstrating that the topographic arrangement of intracortical inhibition contributes to the speed of human perceptual decision-making processes. RTs differ among fingers, displaying an inverted U-shaped function. Simulations using neural fields show the inverted U-shaped RT distribution as an emergent consequence of lateral inhibition. Weakening inhibition through learning shortens RTs, which is modeled through topographically reorganized inhibition. Whereas changes in decision making are often regarded as an outcome of higher cortical areas, our data show that the spatial layout of interaction processes within representational maps contributes to selection and decision-making processes

    Age-Related Attenuation of Dominant Hand Superiority

    Get PDF
    The decline of motor performance of the human hand-arm system with age is well-documented. While dominant hand performance is superior to that of the non-dominant hand in young individuals, little is known of possible age-related changes in hand dominance. We investigated age-related alterations of hand dominance in 20 to 90 year old subjects. All subjects were unambiguously right-handed according to the Edinburgh Handedness Inventory. In Experiment 1, motor performance for aiming, postural tremor, precision of arm-hand movement, speed of arm-hand movement, and wrist-finger speed tasks were tested. In Experiment 2, accelerometer-sensors were used to obtain objective records of hand use in everyday activities

    The Spatial and Temporal Construction of Confidence in the Visual Scene

    Get PDF
    Human subjects can report many items of a cluttered field a few hundred milliseconds after stimulus presentation. This memory decays rapidly and after a second only 3 or 4 items can be stored in working memory. Here we compared the dynamics of objective performance with a measure of subjective report and we observed that 1) Objective performance beyond explicit subjective reports (blindsight) was significantly more pronounced within a short temporal interval and within specific locations of the visual field which were robust across sessions 2) High confidence errors (false beliefs) were largely confined to a small spatial window neighboring the cue. The size of this window did not change in time 3) Subjective confidence showed a moderate but consistent decrease with time, independent of all other experimental factors. Our study allowed us to asses quantitatively the temporal and spatial access to an objective response and to subjective reports

    A Common Cortical Circuit Mechanism for Perceptual Categorical Discrimination and Veridical Judgment

    Get PDF
    Perception involves two types of decisions about the sensory world: identification of stimulus features as analog quantities, or discrimination of the same stimulus features among a set of discrete alternatives. Veridical judgment and categorical discrimination have traditionally been conceptualized as two distinct computational problems. Here, we found that these two types of decision making can be subserved by a shared cortical circuit mechanism. We used a continuous recurrent network model to simulate two monkey experiments in which subjects were required to make either a two-alternative forced choice or a veridical judgment about the direction of random-dot motion. The model network is endowed with a continuum of bell-shaped population activity patterns, each representing a possible motion direction. Slow recurrent excitation underlies accumulation of sensory evidence, and its interplay with strong recurrent inhibition leads to decision behaviors. The model reproduced the monkey's performance as well as single-neuron activity in the categorical discrimination task. Furthermore, we examined how direction identification is determined by a combination of sensory stimulation and microstimulation. Using a population-vector measure, we found that direction judgments instantiate winner-take-all (with the population vector coinciding with either the coherent motion direction or the electrically elicited motion direction) when two stimuli are far apart, or vector averaging (with the population vector falling between the two directions) when two stimuli are close to each other. Interestingly, for a broad range of intermediate angular distances between the two stimuli, the network displays a mixed strategy in the sense that direction estimates are stochastically produced by winner-take-all on some trials and by vector averaging on the other trials, a model prediction that is experimentally testable. This work thus lends support to a common neurodynamic framework for both veridical judgment and categorical discrimination in perceptual decision making

    Aktuelle Einsatzmöglichkeiten der 3D-MR-Rekonstruktion im Kopf-Hals-Bereich

    Full text link

    Toward an interactive race model of double-step saccades

    No full text

    MR imaging in pediatric airway obstruction.

    No full text
    Magnetic resonance (MR) imaging of the trachea was performed in 27 children with congenital tracheal narrowing. The diagnoses included aortic arch anomalies (n = 7), innominate artery compression (n = 13), pulmonary artery compression (n = 5), and tracheomalacia (n = 2). Demonstration of the trachea and the surrounding tissue and vessels on MR images allowed the evaluation of the cause of tracheal compression and the degree and location of collapse. Patients were examined with MR imaging if the cause of airway obstruction was still unclear after bronchoscopy. It is concluded that MR imaging is a well suited modality for characterizing tracheal narrowing without using ionizing radiation or intravenous contrast medium
    corecore