44 research outputs found
Cortical topography of intracortical inhibition influences the speed of decision making
The neocortex contains orderly topographic maps; however, their functional role remains controversial. Theoretical studies have suggested a role in minimizing computational costs, whereas empirical studies have focused on spatial localization. Using a tactile multiple-choice reaction time (RT) task before and after the induction of perceptual learning through repetitive sensory stimulation, we extend the framework of cortical topographies by demonstrating that the topographic arrangement of intracortical inhibition contributes to the speed of human perceptual decision-making processes. RTs differ among fingers, displaying an inverted U-shaped function. Simulations using neural fields show the inverted U-shaped RT distribution as an emergent consequence of lateral inhibition. Weakening inhibition through learning shortens RTs, which is modeled through topographically reorganized inhibition. Whereas changes in decision making are often regarded as an outcome of higher cortical areas, our data show that the spatial layout of interaction processes within representational maps contributes to selection and decision-making processes
Age-Related Attenuation of Dominant Hand Superiority
The decline of motor performance of the human hand-arm system with age is well-documented. While dominant hand performance is superior to that of the non-dominant hand in young individuals, little is known of possible age-related changes in hand dominance. We investigated age-related alterations of hand dominance in 20 to 90 year old subjects. All subjects were unambiguously right-handed according to the Edinburgh Handedness Inventory. In Experiment 1, motor performance for aiming, postural tremor, precision of arm-hand movement, speed of arm-hand movement, and wrist-finger speed tasks were tested. In Experiment 2, accelerometer-sensors were used to obtain objective records of hand use in everyday activities
The Spatial and Temporal Construction of Confidence in the Visual Scene
Human subjects can report many items of a cluttered field a few hundred milliseconds after stimulus presentation. This memory decays rapidly and after a second only 3 or 4 items can be stored in working memory. Here we compared the dynamics of objective performance with a measure of subjective report and we observed that 1) Objective performance beyond explicit subjective reports (blindsight) was significantly more pronounced within a short temporal interval and within specific locations of the visual field which were robust across sessions 2) High confidence errors (false beliefs) were largely confined to a small spatial window neighboring the cue. The size of this window did not change in time 3) Subjective confidence showed a moderate but consistent decrease with time, independent of all other experimental factors. Our study allowed us to asses quantitatively the temporal and spatial access to an objective response and to subjective reports
A Common Cortical Circuit Mechanism for Perceptual Categorical Discrimination and Veridical Judgment
Perception involves two types of decisions about the sensory world:
identification of stimulus features as analog quantities, or discrimination of
the same stimulus features among a set of discrete alternatives. Veridical
judgment and categorical discrimination have traditionally been conceptualized
as two distinct computational problems. Here, we found that these two types of
decision making can be subserved by a shared cortical circuit mechanism. We used
a continuous recurrent network model to simulate two monkey experiments in which
subjects were required to make either a two-alternative forced choice or a
veridical judgment about the direction of random-dot motion. The model network
is endowed with a continuum of bell-shaped population activity patterns, each
representing a possible motion direction. Slow recurrent excitation underlies
accumulation of sensory evidence, and its interplay with strong recurrent
inhibition leads to decision behaviors. The model reproduced the
monkey's performance as well as single-neuron activity in the
categorical discrimination task. Furthermore, we examined how direction
identification is determined by a combination of sensory stimulation and
microstimulation. Using a population-vector measure, we found that direction
judgments instantiate winner-take-all (with the population vector coinciding
with either the coherent motion direction or the electrically elicited motion
direction) when two stimuli are far apart, or vector averaging (with the
population vector falling between the two directions) when two stimuli are close
to each other. Interestingly, for a broad range of intermediate angular
distances between the two stimuli, the network displays a mixed strategy in the
sense that direction estimates are stochastically produced by winner-take-all on
some trials and by vector averaging on the other trials, a model prediction that
is experimentally testable. This work thus lends support to a common
neurodynamic framework for both veridical judgment and categorical
discrimination in perceptual decision making
Magnetic Resonance Imaging as a New Diagnostic Criterion in Paediatric Airway Obstruction
MR imaging in pediatric airway obstruction.
Magnetic resonance (MR) imaging of the trachea was performed in 27 children with congenital tracheal narrowing. The diagnoses included aortic arch anomalies (n = 7), innominate artery compression (n = 13), pulmonary artery compression (n = 5), and tracheomalacia (n = 2). Demonstration of the trachea and the surrounding tissue and vessels on MR images allowed the evaluation of the cause of tracheal compression and the degree and location of collapse. Patients were examined with MR imaging if the cause of airway obstruction was still unclear after bronchoscopy. It is concluded that MR imaging is a well suited modality for characterizing tracheal narrowing without using ionizing radiation or intravenous contrast medium
