436 research outputs found

    Gibberella musae (Fusarium musae) sp. nov., a recently discovered species from banana is sister to F. verticillioides

    Get PDF
    Several strains of Fusarium isolated from banana were identified previously as F. verticillioides (Sacc.) Nirenberg but described as unable to produce fumonisin. Here we report biochemical and morphological evidence, as well as multilocus phylogenetic analyses based on elongation factor (EF-1a), calmodulin, b-tubulin, and the second largest subunit of RNA polymerase II (RPB2) sequences, indicating that these isolates represent a unique lineage in the Gibberella fujikuroi species complex related to but distinct from F. verticillioides. Together with previous results of molecular studies, as well as with results of metabolite analyses, crossing experiments, pathogenicity tests and morphological characterization, these new data indicate that these strains isolated from banana represent a new species, Gibberella musae Van Hove et al. sp. nov. (anamorph: Fusarium musae Van Hove et al. sp. nov.), which is described herei

    A Detection Method for Tropical Race 4 of the Banana Pathogen Fusarium oxysporum f. sp. cubense

    Get PDF
    Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Fusarium wilt, the devastating disease that ruined the ‘Gros Michel’ (AAA)-based banana production in the first half of the 20th century. The occurrence of a new variant in Southeast Asia that overcomes the resistance in Cavendish clones such as ‘Grand Naine’ (AAA) is a major concern to current banana production worldwide. The threat posed by this new variant, called tropical race 4 (TR4), may be overcome by the introduction of resistant cultivars. However, the identification of new resistant sources or breeding for resistance is a long-term effort. Currently, the only option to control the disease is to avoid or reduce the spread of the pathogen by eradication of infected plants and isolation of infested plantations. This requires sensitive and highly specific diagnostics that enable early detection of the pathogen. A two-locus database of DNA sequences, from over 800 different isolates from multiple formae speciales of F. oxysporum, was used to develop a molecular diagnostic tool that specifically detects isolates from the vegetative compatibility group (VCG) 01213, which encompasses the Foc TR4 genotype. This diagnostic tool was able to detect all Foc TR4 isolates tested, while none of the Foc isolates from 19 VCGs other than 01213 showed any reaction. In addition, the developed diagnostic tool was able to detect Foc TR4 when using DNA samples from different tissues of ‘Grand Naine’ plants inoculated with TR4 isolate

    A molecular diagnostic for tropical race 4 of the banana

    Get PDF
    This study analysed genomic variation of the translation elongation factor 1 (TEF-1) and the intergenic spacer region (IGS) of the nuclear ribosomal operon of Fusarium oxysporum f. sp. cubense (Foc) isolates, from different banana production areas, representing strains within the known races, comprising 20 vegetative compatibility groups

    Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany

    Get PDF
    Abstract High year-to-year variability in the incidence of Fusarium spp. and mycotoxin contamination was observed in a two-year survey investigating the impact of maize ear rot in 84 field samples from Germany. Fusarium verticillioides, F. graminearum, and F. proliferatum were the predominant species infecting maize kernels in 2006, whereas in 2007 the most frequently isolated species were F. graminearum, F. cerealis and F. subglutinans. Fourteen Fusariumrelated mycotoxins were detected as contaminants of maize kernels analyzed by a multi-mycotoxin determination method. In 2006, a growth season characterized by high temperature and low rainfall during anthesis and early grain filling, 75% of the maize samples were contaminated with deoxynivalenol, 34% with fumonisins and 27% with zearalenone. In 2007, characterized by moderate temperatures and frequent rainfall during the entire growth season, none of the 40 maize samples had quantifiable levels of fumonisins while deoxynivalenol and zearalenone were detected in 90% and 93% of the fields, respectively. In addition, 3-acetyldeoxynivalenol, 15-acetyldeoxnivalenol, moniliformin, beauvericin, nivalenol and enniatin B were detected as common contaminants produced in both growing seasons. The results demonstrate a significant mycotoxin contamination associated with maize ear rots in Germany and indicate, with regard to anticipated climate change, that fumonisins-producing species already present in German maize production may become more important. Keywords Deoxynivalenol . Ear rot . F. verticillioides . F. graminearum . Fumonisin . Zearalenon

    Ga and Gß Proteins Regulate the Cyclic AMP Pathway That Is Required for Development and Pathogenicity of the Phytopathogen Mycosphaerella graminicola

    Get PDF
    We identified and functionally characterized genes encoding three G alpha proteins and one G beta protein in the dimorphic fungal wheat pathogen Mycosphaerella graminicola, which we designated MgGpa1, MgGpa2, MgGpa3, and MgGpb1, respectively. Sequence comparisons and phylogenetic analyses showed that MgGPA1 and MgGPA3 are most related to the mammalian G alpha(i) and G alpha(s) families, respectively, whereas MgGPA2 is not related to either of these families. On potato dextrose agar (PDA) and in yeast glucose broth (YGB), MgGpa1 mutants produced significantly longer spores than those of the wild type (WT), and these developed into unique fluffy mycelia in the latter medium, indicating that this gene negatively controls filamentation. MgGpa3 mutants showed more pronounced yeast-like growth accompanied with hampered filamentation and secreted a dark-brown pigment into YGB. Germ tubes emerging from spores of MgGpb1 mutants were wavy on water agar and showed a nested type of growth on PDA that was due to hampered filamentation, numerous cell fusions, and increased anastomosis. Intracellular cyclic AMP (cAMP) levels of MgGpb1 and MgGpa3 mutants were decreased, indicating that both genes positively regulate the cAMP pathway, which was confirmed because the WT phenotype was restored by adding cAMP to these mutant cultures. The cAMP levels in MgGpa1 mutants and the WT were not significantly different, suggesting that this gene might be dispensable for cAMP regulation. In planta assays showed that mutants of MgGpa1, MgGpa3, and MgGpb1 are strongly reduced in pathogenicity. We concluded that the heterotrimeric G proteins encoded by MgGpa3 and MgGpb1 regulate the cAMP pathway that is required for development and pathogenicity in M. graminicola

    Molecular Diagnostics in the Mycosphaerella Leaf Spot Disease Complex of Banana and for Radopholus similis

    Get PDF
    Mycosphaerella leaf spots and nematodes threaten banana cultivation worldwide. The Mycosphaerella disease complex involves three related ascomycetous fungi: Mycosphaerella fijiensis, M. musicola and M. eumusae. The exact distribution of these three species and their disease epidemiology remain unclear, since their symptoms and life cycles are rather similar. Diagnosing these diseases and the respective causal agents is based on the presence of host symptoms and fungal fruiting structures, but is time consuming and not conducive to preventive management. In the present study, we developed rapid and robust species-specific diagnostic tools to detect and quantify M. fijiensis, M. musicola and M. eumusae. Conventional species-specific PCR primers were developed based on the actin gene that detected as little as 100, 1 and 10 pg/µl DNA from, respectively, M. fijiensis, M. musicola and M. eumusae. Furthermore, TaqMan real-time quantitative PCR assays that were developed based on the ß-tubulin gene detected quantities as low as 1 pg/µl DNA of each species from pure cultures and 1.6 pg/µl DNA/mg of M. fijiensis from dry leaf tissue. The efficacy of the tests was validated using naturally infected banana leaves. Similar technology has been used to develop a quantitative PCR assay for the banana burrowing nematode, Radopholus similis, which is currently being validate

    Variation in sequence and location of the fumonisin mycotoxin niosynthetic gene cluster in Fusarium

    Get PDF
    In Fusarium, the ability to produce fumonisins is governed by a 17-gene fumonisin biosynthetic gene (FUM) cluster. Here, we examined the cluster in F. oxysporum strain O-1890 and nine other species selected to represent a wide range of the genetic diversity within the GFSC

    Kit diagnóstico para a maior ameaça bananicultura mundial.

    Get PDF
    A raça 4 tropical (TR4) de Fusarium oxysporum f. sp. cubense (Foc), praga quarentenária A1 para a África e as Américas é atualmente a maior ameaça da bananicultura mundial. Na ausência de variedades resistentes e considerando o tempo necessário para gerar novas cultivares, as medidas de controle mais eficientes são evitar sua entrada e detectar e erradicar focos de infecção. Para tal, um método de diagnóstico rápido, confiável e altamente específico é essencial. Embora um método fora anteriormente proposto (Lin et al. 2008), o mesmo não mostrou especificidade para TR4 (Dita et al. 2010).Disponível em: Acesso em: 21 fev. 2011

    Optimizing the Emitter Layer for Higher Efficiency Solar Cell Based SiGe Using AMPS1D

    Get PDF
    The thin-film SiGe is considered as promising candidate to meet the outstanding need for photovoltaic applications with enhanced adsorption characteristics and improved conversion efficiency [1-6]. In this paper, we simulated a solar cell type SiGe using AMPS1D (Analysis of Microelectronic and photonic structure) developed at Pennsylvania State University, to analyze emitter layer (thickness, doping) and we studied their influence on the photovoltaic solar cell. The simulation result shows that the maximum efficiency of 16.181 % has been achieved, with short circuit current density of 32.657 mA/cm2, open circuit voltage of 0.61 V and fill factor of 0.809. The obtained results show that the proposed design can be considered as a potential candidate for high performance photovoltaic applications
    corecore