1,333 research outputs found

    Theoretical tools for atom laser beam propagation

    Full text link
    We present a theoretical model for the propagation of non self-interacting atom laser beams. We start from a general propagation integral equation, and we use the same approximations as in photon optics to derive tools to calculate the atom laser beam propagation. We discuss the approximations that allow to reduce the general equation whether to a Fresnel-Kirchhoff integral calculated by using the stationary phase method, or to the eikonal. Within the paraxial approximation, we also introduce the ABCD matrices formalism and the beam quality factor. As an example, we apply these tools to analyse the recent experiment by Riou et al. [Phys. Rev. Lett. 96, 070404 (2006)]

    Tuberculosis treatment in a refugee and migrant population: 20 years of experience on the Thai-Burmese border.

    Get PDF
    Although tuberculosis (TB) is a curable disease, it remains a major global health problem and an important cause of morbidity and mortality among vulnerable populations, including refugees and migrants

    Optical parametric oscillation with distributed feedback in cold atoms

    Full text link
    There is currently a strong interest in mirrorless lasing systems, in which the electromagnetic feedback is provided either by disorder (multiple scattering in the gain medium) or by order (multiple Bragg reflection). These mechanisms correspond, respectively, to random lasers and photonic crystal lasers. The crossover regime between order and disorder, or correlated disorder, has also been investigated with some success. Here, we report one-dimensional photonic-crystal lasing (that is, distributed feedback lasing) with a cold atom cloud that simultaneously provides both gain and feedback. The atoms are trapped in a one-dimensional lattice, producing a density modulation that creates a strong Bragg reflection with a small angle of incidence. Pumping the atoms with auxiliary beams induces four-wave mixing, which provides parametric gain. The combination of both ingredients generates a mirrorless parametric oscillation with a conical output emission, the apex angle of which is tunable with the lattice periodicity

    Устройство для перемещения датчиков в магнитном поле малогабаритного бетатрона

    Get PDF
    Рассматривается возможность увеличения точности измерений характеристик магнитного поля посредством более точной установки датчиков в исследуемой точке

    Who I Am: The Meaning of Early Adolescents’ Most Valued Activities and Relationships, and Implications for Self-Concept Research

    Get PDF
    Self-concept research in early adolescence typically measures young people’s self-perceptions of competence in specific, adult-defined domains. However, studies have rarely explored young people’s own views of valued self-concept factors and their meanings. For two major self domains, the active and the social self, this mixed-methods study identified factors valued most by 526 young people from socioeconomically diverse backgrounds in Ireland (10-12 years), and explored the meanings associated with these in a stratified subsample (n = 99). Findings indicate that self-concept scales for early adolescence omit active and social self factors and meanings valued by young people, raising questions about content validity of scales in these domains. Findings also suggest scales may under-represent girls’ active and social selves; focus too much on some school-based competencies; and, in omitting intrinsically salient self domains and meanings, may focus more on contingent (extrinsic) rather than true (intrinsic) self-esteem

    L\'evy flights of photons in hot atomic vapours

    Full text link
    Properties of random and fluctuating systems are often studied through the use of Gaussian distributions. However, in a number of situations, rare events have drastic consequences, which can not be explained by Gaussian statistics. Considerable efforts have thus been devoted to the study of non Gaussian fluctuations such as L\'evy statistics, generalizing the standard description of random walks. Unfortunately only macroscopic signatures, obtained by averaging over many random steps, are usually observed in physical systems. We present experimental results investigating the elementary process of anomalous diffusion of photons in hot atomic vapours. We measure the step size distribution of the random walk and show that it follows a power law characteristic of L\'evy flights.Comment: This final version is identical to the one published in Nature Physic

    A slow gravity compensated Atom Laser

    Full text link
    We report on a slow guided atom laser beam outcoupled from a Bose-Einstein condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser beam can be controlled by compensating the gravitational acceleration and we reach residual accelerations as low as 0.0027 g. The outcoupling mechanism allows for the production of a constant flux of 4.5x10^6 atoms per second and due to transverse guiding we obtain an upper limit for the mean beam width of 4.6 \mu\m. The transverse velocity spread is only 0.2 mm/s and thus an upper limit for the beam quality parameter is M^2=2.5. We demonstrate the potential of the long interrogation times available with this atom laser beam by measuring the trap frequency in a single measurement. The small beam width together with the long evolution and interrogation time makes this atom laser beam a promising tool for continuous interferometric measurements.Comment: 7 pages, 8 figures, to be published in Applied Physics
    corecore