8 research outputs found

    Expression and Purification of Recombinant Hemoglobin in Escherichia coli

    Get PDF
    Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis

    An erythroid chaperone that facilitates folding of α-globin subunits for hemoglobin synthesis

    No full text
    Erythrocyte precursors produce abundant α- and β-globin proteins, which assemble with each other to form hemoglobin A (HbA), the major blood oxygen carrier. αHb-stabilizing protein (AHSP) binds free α subunits reversibly to maintain their structure and limit their ability to generate reactive oxygen species. Accordingly, loss of AHSP aggravates the toxicity of excessive free α-globin caused by β-globin gene disruption in mice. Surprisingly, we found that AHSP also has important functions when free α-globin is limited. Thus, compound mutants lacking both Ahsp and 1 of 4 α-globin genes (genotype Ahsp–/–α-globin*α/αα) exhibited more severe anemia and Hb instability than mice with either mutation alone. In vitro, recombinant AHSP promoted folding of newly translated α-globin, enhanced its refolding after denaturation, and facilitated its incorporation into HbA. Moreover, in erythroid precursors, newly formed free α-globin was destabilized by loss of AHSP. Therefore, in addition to its previously defined role in detoxification of excess α-globin, AHSP also acts as a molecular chaperone to stabilize nascent α-globin for HbA assembly. Our findings illustrate what we believe to be a novel adaptive mechanism by which a specialized cell coordinates high-level production of a multisubunit protein and protects against various synthetic imbalances

    Improving the production of cofactor-containing proteins: production of human hemoglobin in yeast

    No full text
    Human hemoglobin is an essential protein, whose main function as an oxygen carrier is indispensable for life. Hemoglobin is a cofactor-containing protein with heme as prosthetic group. Same as in humans, heme is synthesized in many organisms in a complex pathway involving two cellular compartments (mitochondria and cytosol), which is tightly regulated. Red blood cells (erythrocytes) are specialized and adapted for production and transport of the hemoglobin molecules. In addition to oxygen binding, hemoglobin can participate in a variety of chemical reactions by\ua0its iron and heme and may become toxic when released from erythrocytes. Hemoglobin is a major target for the development of blood substitutes/oxygen carriers, and therefore its microbial production is attractive, as it may provide a cheap and reliable source of human hemoglobin. Significant efforts have been dedicated to this task for the last three decades. Moreover since the first generation of cell-free blood substitutes based on unmodified hemoglobin failed human trials, mutant forms became of great interest.In this chapter we summarize the existing knowledge about human hemoglobin, challenges of its microbial production, and its improvement, with a particular focus upon yeast as production host
    corecore