1,915 research outputs found

    Interactions between male guppies facilitates the transmission of the mongenean ectoparasite Gyrodactylus turnbulli

    Get PDF
    In a previous study we found that female guppies shoaled more than males and that there was greater transmission of the ectoparasite Gyrodactylus turnbulli between females. Here, to test for a possible sex bias in parasite transmission, we conducted a similar experiment on single sex shoals of male and female guppies, observing host behaviour before and after the introduction of an infected shoal mate. The initial parasite burden was considerably lower in the present experiment (30 worms versus >100 worms previously) and we used a different stock of ornamental guppies (Green Cobra variety versus a Tuxedo hybrid previously). Contrary to our previous finding, males aggregated significantly more than females. Males performed ‘sigmoid’ displays towards each other, a courtship behaviour that is more generally directed towards females. Due to the high rate of male–male interactions, parasite transmission was 10 times higher between males than between females. Furthermore, shoaling intensity was highest for the most parasitised fish indicating that these infected fish were not avoided by non-parasitised conspecifics. These studies show that certain social behaviours including shoaling and courtship displays, appear to facilitate the transmission of gyrodactylid parasites

    Sex-Specific Differences in Shoaling Affect Parasite Transmission in Guppies

    Get PDF
    Background: Individuals have to trade-off the costs and benefits of group membership during shoaling behaviour. Shoaling can increase the risk of parasite transmission, but this cost has rarely been quantified experimentally. Guppies (Poecilia reticulata) are a model system for behavioural studies, and they are commonly infected by gyrodactylid parasites, notorious fish pathogens that are directly transmitted between guppy hosts. Methodology/Principal Findings:Parasite transmission in single sex shoals of male and female guppies were observed using an experimental infection of Gyrodactylus turnbulli. Parasite transmission was affected by sex-specific differences in host behaviour, and significantly more parasites were transmitted when fish had more frequent and more prolonged contact with each other. Females shoaled significantly more than males and had a four times higher risk to contract an infection. Conclusions/Significance: Intersexual differences in host behaviours such as shoaling are driven by differences in natural and sexual selection experienced by both sexes. Here we show that the potential benefits of an increased shoaling tendency are traded off against increased risks of contracting an infectious parasite in a group-living species

    Pace of life, predators and parasites: predator-induced life-history evolution in Trinidadian guppies predicts decrease in parasite tolerance

    Get PDF
    A common evolutionary response to predation pressure is increased investment in reproduction, ultimately resulting in a fast life history. Theory and comparative studies suggest that short-lived organisms invest less in defence against parasites than those that are longer lived (the pace of life hypothesis). Combining these tenets of evolutionary theory leads to the specific, untested prediction that within species, populations experiencing higher predation pressure invest less in defence against parasites. The Trinidadian guppy, Poecilia reticulata, presents an excellent opportunity to test this prediction: guppy populations in lower courses of rivers experience higher predation pressure, and as a consequence have evolved faster life histories, than those in upper courses. Data from a large-scale field survey showed that fish infected with Gyrodactylus parasites were of a lower body condition (quantified using the scaled mass index) than uninfected fish, but only in lower course populations. Although the evidence we present is correlational, it suggests that upper course guppies sustain lower fitness costs of infection, i.e. are more tolerant, than lower course guppies. The data are therefore consistent with the pace of life hypothesis of parasite defence allocation, and suggest that life-history traits mediate the indirect effect of predators on the parasites of their prey

    Cryptic MHC Polymorphism Revealed but Not Explained by Selection on the Class IIB Peptide-Binding Region

    Get PDF
    The immune genes of the major histocompatibility complex (MHC) are characterized by extraordinarily high levels of nucleotide and haplotype diversity. This variation is maintained by pathogen-mediated balancing selection that is operating on the peptide-binding region (PBR). Several recent studies have found, however, that some populations possess large clusters of alleles that are translated into virtually identical proteins. Here, we address the question of how this nucleotide polymorphism is maintained with little or no functional variation for selection to operate on. We investigate circa 750–850 bp of MHC class II DAB genes in four wild populations of the guppy Poecilia reticulata. By sequencing an extended region, we uncovered 40.9% more sequences (alleles), which would have been missed if we had amplified the exon 2 alone. We found evidence of several gene conversion events that may have homogenized sequence variation. This reduces the visible copy number variation (CNV) and can result in a systematic underestimation of the CNV in studies of the MHC and perhaps other multigene families. We then focus on a single cluster, which comprises 27 (of a total of 66) sequences. These sequences are virtually identical and show no signal of selection. We use microsatellites to reconstruct the populations' demography and employ simulations to examine whether so many similar nucleotide sequences can be maintained in the populations. Simulations show that this variation does not behave neutrally. We propose that selection operates outside the PBR, for example, on linked immune genes or on the “sheltered load” that is thought to be associated to the MHC. Future studies on the MHC would benefit from extending the amplicon size to include polymorphisms outside the exon with the PBR. This may capture otherwise cryptic haplotype variation and CNV, and it may help detect other regions in the MHC that are under selection

    Climate model boundary conditions for four Cretaceous time slices

    Get PDF
    International audienceGeneral circulation models (GCMs) are useful tools for investigating the characteristics and dynamics of past climates. Understanding of past climates contributes significantly to our overall understanding of Earth's climate system. One of the most time consuming, and often daunting, tasks facing the paleoclimate modeler, particularly those without a geological background, is the production of surface boundary conditions for past time periods. These boundary conditions consist of, at a minimum, continental configurations derived from plate tectonic modeling, topography, bathymetry, and a vegetation distribution. Typically, each researcher develops a unique set of boundary conditions for use in their simulations. Thus, unlike simulations of modern climate, basic assumptions in paleo surface boundary conditions can vary from researcher to researcher. This makes comparisons between results from multiple researchers difficult and, thus, hinders the integration of studies across the broader community. Unless special changes to surface conditions are warranted, researcher dependent boundary conditions are not the most efficient way to proceed in paleoclimate investigations. Here we present surface boundary conditions (land-sea distribution, paleotopography, paleobathymetry, and paleovegetation distribution) for four Cretaceous time slices (120 Ma, 110 Ma, 90 Ma, and 70 Ma). These boundary conditions are modified from base datasets to be appropriate for incorporation into numerical studies of Earth's climate and are available in NetCDF format upon request from the lead author. The land-sea distribution, bathymetry, and topography are based on the 1°×1° (latitude × longitude) paleo Digital Elevation Models (paleoDEMs) of Christopher Scotese. Those paleoDEMs were adjusted using the paleogeographical reconstructions of Ronald Blakey (Northern Arizona University) and published literature and were then modified for use in GCMs. The paleovegetation distribution is based on published data and reconstructions and consultation with members of the paleobotanical community and is represented as generalized biomes that should be easily translatable to many vegetation-modeling schemes

    Allergen immunotherapy for allergic airway diseases:Use lessons from the past to design a brighter future

    Get PDF
    Allergic respiratory diseases, such as allergic dermatitis, food allergy, allergic rhino conjunctivitis and allergic asthma, are chronic inflammatory diseases with increasing prevalence. Symptoms include such as watery or itchy itching of the mouth, skin, or the eyes, swelling of the face or throat, sneezing, congestion or vomiting, wheezing, shortness of breath and coughing. For allergic asthma, additional symptoms include tightness of chest, cough, wheezing, and reversible airflow limitation. These symptoms can be triggered by inhalation of aller -gens such as food allergens or airborne allergens such as those from tree-or grass pollen and house dust mites. Pharmacological intervention in allergic disease includes the use of antihistamines, immune suppressive drugs and in case of asthma, the use of (long acting) beta-agonists for relaxation of the constricted airways. These treat-ment options merely suppress symptoms and do not cure the disease. Allergen immunotherapy (AIT), in con -trast, has the capacity of inducing long-term tolerance, with symptom relief persisting decennia after discontinuation of treatment, despite recurrent re-exposure to the allergen. However, AIT is not effective for all allergic disorders, and treatment for several years is required to obtain long-term protection. Moreover, some forms of AIT have safety concerns, with risk of mild to severe allergic reactions. To improve safety and efficacy of AIT, the underlying mechanisms have been studied extensively in the clinic as well as in experimental models of allergic airway inflammation.Despite more than a century of clinical experience and a vast body of experimental and translational studies into the immunological and cellular mechanisms underpinning its therapeutic potential, AIT is still not implemented in routine clinical care for allergic asthma. This review provides an overview of the substantial developments that contribute to our knowledge of the pathogenesis of allergic airway diseases, the mechanism of action of AIT, its treatment routes and schedules, the standardization of extracts and use of adjuvantia. Moreover, the main con-clusions from experimental models of AIT with regard to the safety and effectiveness of the treatment are summarized, and future directions for further improvements are outlined. AIT urgently requires further improvements in order to increase its efficiency and shorten the treatment duration while remaining safe and costeffective.(c) 2022 Published by Elsevier Inc

    Rapid Urine-Based Screening for Tuberculosis to Reduce AIDS-Related Mortality in Hospitalized Patients in Africa (STAMP) Trial Protocol

    Get PDF
    Trial protocol for the STAMP trial- a multi-country (Malawi and South Africa) individually randomised clinical trial to determine the impact on early mortality of the addition of rapid, urine-based TB screening to the standard of care TB screening in HIV-infected patients requiring admission to medical wards in hospitals in southern Africa

    High dose vitamin D3 empowers effects of subcutaneous immunotherapy in a grass pollen-driven mouse model of asthma

    Get PDF
    Allergen-specific immunotherapy (AIT) has the potential to provide long-term protection against allergic diseases. However, efficacy of AIT is suboptimal, while application of high doses allergen has safety concerns. The use of adjuvants, like 1,25(OH)2VitD3 (VitD3), can improve efficacy of AIT. We have previously shown that low dose VitD3 can enhance suppression of airway inflammation, but not airway hyperresponsiveness in a grass pollen (GP)-subcutaneous immunotherapy (SCIT) mouse model of allergic asthma. We here aim to determine the optimal dose and formulation of VitD3 for the GP SCIT. GP-sensitized BALBc/ByJ mice received three SCIT injections of VitD3-GP (30, 100, and 300 ng or placebo). Separately, synthetic lipids, SAINT, was added to the VitD3-GP-SCIT formulation (300 nmol) and control groups. Subsequently, mice were challenged with intranasal GP, and airway hyperresponsiveness, GP-specific IgE, -IgG1, and -IgG2a, ear-swelling responses (ESR), eosinophils in broncho-alveolar lavage fluid and lung were measured. VitD3 supplementation of GP-SCIT dose-dependently induced significantly enhanced suppression of spIgE, inflammation and hyperresponsiveness, while neutralizing capacity was improved and ESR were reduced. Addition of VitD3 further decreased Th2 cytokine responses and innate cytokines to allergens in lung tissue by GP-SCIT. However, addition of synthetic lipids to the allergen/VitD3 mixes had no additional effect on VitD3-GP-SCIT. We find a clear, dose dependent effect of VitD3 on GP-SCIT-mediated suppression of allergic inflammation and airway hyperresponsiveness. In contrast, addition of synthetic lipids to the allergen/VitD3 mix had no therapeutic effect. These studies underscore the relevance of VitD3 as an adjuvant to improve clinical efficacy of SCIT treatment regimens
    corecore