180 research outputs found

    The Addition of Tissue Stromal Vascular Fraction to Platelet-Rich Plasma Supplemented Lipofilling Does Not Improve Facial Skin Quality:A Prospective Randomized Clinical Trial

    Get PDF
    Background: Lipofilling has become popular as a treatment to improve aging-related skin characteristics (eg, wrinkles, pigmentation spots, pores, or rosacea). Different additives such as platelet-rich plasma (PRP) or stromal vascular fraction (SVF) have been combined with lipofilling to increase the therapeutic effect of adipose-derived stromal cells (ASCs). Objectives: The aim of this study was to examine the hypothesis that mechanically isolated SVF augments the therapeutic effect of PRP-supplemented lipofilling to improve facial skin quality. Methods: This prospective, double-blind, placebo-controlled, randomized trial was conducted between 2016 and 2019. In total, 28 female subjects were enrolled; 25 completed the follow-up. All patients received PRP-supplemented lipofilling with either mechanically isolated SVF or saline. SVF was isolated by fractionation of adipose tissue (tSVF). Results were evaluated by changes in skin elasticity and transepidermal water loss, changes in skin-aging-related features, ie, superficial spots, wrinkles, skin texture, pores, vascularity, and pigmentation, as well as patient satisfaction (FACE-Q), recovery, and number of complications up to 1 year postoperative. Results: The addition of tSVF to PRP-supplemented lipofilling did not improve skin elasticity, transepidermal water loss, or skin-aging-related features. No improvement in patient satisfaction with overall facial appearance or facial skin quality was seen when tSVF was added to PRP-supplemented lipofilling. Conclusions: In comparison to PRP-supplemented lipofilling, PRP-supplemented lipofilling combined with tSVF does not improve facial skin quality or patient satisfaction in a healthy population. PRP-supplemented lipofilling combined with tSVF can be considered a safe procedure

    Cloud computing mobile application for remote monitoring of Bell's palsy

    Get PDF
    Mobile applications provide the healthcare industry with a means of connecting with patients in their own home utilizing their own personal mobile devices such as tablets and phones. This allows therapists to monitor the progress of people under their care from a remote location and all with the added benefit that patients are familiar with their own mobile devices; thereby reducing the time required to train patients with the new technology. There is also the added benefit to the health service that there is no additional cost required to purchase devices for use. The Facial Remote Activity Monitoring Eyewear (FRAME) mobile application and web service framework has been designed to work on the IOS and android platforms, the two most commonly used today. Results: The system utilizes secure cloud based data storage to collect, analyse and store data, this allows for near real time, secure access remotely by therapists to monitor their patients and intervene when required. The underlying framework has been designed to be secure, anonymous and flexible to ensure compliance with the data protection act and the latest General Data Protection Regulation (GDPR); this new standard came into effect in April 2018 and replaces the Data Protection Act in the UK and Europe

    Tissue Stromal Vascular Fraction Improves Early Scar Healing:A Prospective Randomized Multicenter Clinical Trial

    Get PDF
    Background Wound healing and scar formation depends on a plethora of factors. Given the impact of abnormal scar formation, interventions aimed to improve scar formation would be most advantageous. The tissue stromal vascular fraction (tSVF) of adipose tissue is composed of a heterogenous mixture of cells embedded in extracellular matrix. It contains growth factors and cytokines involved in wound-healing processes, eg, parenchymal proliferation, inflammation, angiogenesis, and matrix remodeling.Objectives The aim of this study was to investigate the hypothesis that tSVF reduces postsurgical scar formation.Methods This prospective, double-blind, placebo-controlled, randomized trial was conducted between 2016 and 2020. Forty mammoplasty patients were enrolled and followed for 1 year. At the end of the mammoplasty procedure, all patients received tSVF in the lateral 5 cm of the horizontal scar of 1 breast and a placebo injection in the contralateral breast to serve as an intrapatient control. Primary outcome was scar quality measure by the Patient and Observer Scar Assessment Scale (POSAS). Secondary outcomes were obtained from photographic evaluation and histologic analysis of scar tissue samples.Results Thirty-four of 40 patients completed follow-up. At 6 months postoperation, injection of tSVF had significantly improved postoperative scar appearance as assessed by the POSAS questionnaire. No difference was observed at 12 months postoperation. No improvement was seen based on the evaluation of photographs and histologic analysis of postoperative scars between both groups.Conclusions Injection of tSVF resulted in improved wound healing and reduced scar formation at 6 months postoperation, without any noticeable advantageous effects seen at 12 months.</p

    Effect-Directed Analysis of Municipal Landfill Soil Reveals Novel Developmental Toxicants in the Zebrafish Danio rerio

    Get PDF
    Effect-directed analysis (EDA) is an approach used to identify (unknown) contaminants in complex samples which cause toxicity, using a combination of biology and chemistry. The goal of this work was to apply EDA to identify developmental toxicants in soil samples collected from a former municipal landfill site. Soil samples were extracted, fractionated, and tested for developmental effects with an embryotoxicity assay in the zebrafish Danio rerio. Gas chromatograph mass selective detection (GC-MSD) chemical screening was used to reveal candidate developmental toxicants in fractions showing effects. In a parallel study, liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry was also applied to one polar subfraction (Hoogenboom et al. J. Chromatogr. A2009, 1216, 510-519). EDA resulted in the identification of a number of previously unknown developmental toxicants, which were confirmed to be present in soil by GC-MS. These included 11H-benzo[b]fluorene, 9-methylacridine, 4-azapyrene, and 2-phenylquinoline, as well as one known developmental toxicant (retene). This work revealed the presence of novel contaminants in the environment that may affect vertebrate development, which are not subject to monitoring or regulation under current soil quality assessment guidelines. © 2011 American Chemical Society

    Systematic generation of in vivo G protein-coupled receptor mutants in the rat

    Get PDF
    G-protein-coupled receptors (GPCRs) constitute a large family of cell surface receptors that are involved in a wide range of physiological and pathological processes, and are targets for many therapeutic interventions. However, genetic models in the rat, one of the most widely used model organisms in physiological and pharmacological research, are largely lacking. Here, we applied N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis to generate an in vivo GPCR mutant collection in the rat. A pre-selected panel of 250 human GPCR homologs was screened for mutations in 813 rats, resulting in the identification of 131 non-synonymous mutations. From these, seven novel potential rat gene knockouts were established as well as 45 lines carrying missense mutations in various genes associated with or involved in human diseases. We provide extensive in silico modeling results of the missense mutations and show experimental data, suggesting loss-of-function phenotypes for several models, including Mc4r and Lpar1. Taken together, the approach used resulted not only in a set of novel gene knockouts, but also in allelic series of more subtle amino acid variants, similar as commonly observed in human disease. The mutants presented here may greatly benefit studies to understand specific GPCR function and support the development of novel therapeutic strategies

    Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment

    Get PDF
    High frequency (30–70 Hz) gamma band oscillations in the human electro-encephalogram (EEG) are thought to reflect perceptual and cognitive processes. It is therefore interesting to study these measures in cognitive impairment and dementia. To evaluate gamma band oscillations as a diagnostic biomarker in Alzheimer’s disease (AD) and mild cognitive impairment (MCI), 15 psychoactive drug naïve AD patients, 20 MCI patients and 20 healthy controls participated in this study. Gamma band power (GBP) was measured in four conditions viz. resting state, music listening, story listening and visual stimulation. To evaluate test–retest reliability (TRR), subjects underwent a similar assessment one week after the first. The overall TRR was high. Elevated GBP was observed in AD when compared to MCI and control subjects in all conditions. The results suggest that elevated GBP is a reproducible and sensitive measure for cognitive dysfunction in AD in comparison with MCI and controls

    Bayesian Modeling of Perceived Surface Slant from Actively-Generated and Passively-Observed Optic Flow

    Get PDF
    We measured perceived depth from the optic flow (a) when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b) when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an “inverse optics” model that takes head motion information into account, and a probabilistic model that ignores extra-retinal signals. We compare these two approaches within the framework of the Bayesian theory. The “inverse optics” Bayesian model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error; because of the influence of a “prior” for flatness, the slant estimates become systematically biased as the measurement errors increase. The Bayesian model, which ignores the observer's motion, always produces distorted estimates of surface slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical findings. The present results suggest that (a) in active vision perceived surface slant may be the product of probabilistic processes which do not guarantee the correct solution, and (b) extra-retinal signals may be mainly used for a better measurement of retinal information

    Nobody Is Perfect: ERP Effects Prior to Performance Errors in Musicians Indicate Fast Monitoring Processes

    Get PDF
    Background: One central question in the context of motor control and action monitoring is at what point in time errors can be detected. Previous electrophysiological studies investigating this issue focused on brain potentials elicited after erroneous responses, mainly in simple speeded response tasks. In the present study, we investigated brain potentials before the commission of errors in a natural and complex situation. Methodology/Principal Findings: Expert pianists bimanually played scales and patterns while the electroencephalogram (EEG) was recorded. Event-related potentials (ERPs) were computed for correct and incorrect performances. Results revealed differences already 100 ms prior to the onset of a note (i.e., prior to auditory feedback). We further observed that erroneous keystrokes were delayed in time and pressed more slowly. Conclusions: Our data reveal neural mechanisms in musicians that are able to detect errors prior to the execution of erroneous movements. The underlying mechanism probably relies on predictive control processes that compare the predicted outcome of an action with the action goal

    Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow

    Get PDF
    Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant
    corecore