58 research outputs found
QCD thermodynamics with continuum extrapolated Wilson fermions II
We continue our investigation of 2+1 flavor QCD thermodynamics using
dynamical Wilson fermions in the fixed scale approach. Two additional pion
masses, approximately 440 MeV and 285 MeV, are added to our previous work at
545 MeV. The simulations were performed at 3 or 4 lattice spacings at each pion
mass. The renormalized chiral condensate, strange quark number susceptibility
and Polyakov loop is obtained as a function of the temperature and we observe a
decrease in the light chiral pseudo-critical temperature as the pion mass is
lowered while the pseudo-critical temperature associated with the strange quark
number susceptibility or the Polyakov loop is only mildly sensitive to the pion
mass. These findings are in agreement with previous continuum results obtained
in the staggered formulation.Comment: 19 pages, 13 figures, published versio
Charmonium spectral functions from 2+1 flavour lattice QCD
Finite temperature charmonium spectral functions in the pseudoscalar and
vector channels are studied in lattice QCD with 2+1 flavours of dynamical
Wilson quarks, on fine isotropic lattices (with a lattice spacing of 0.057 fm),
with a non-physical pion mass of 545 MeV. The highest
temperature studied is approximately . Up to this temperature no
significant variation of the spectral function is seen in the pseudoscalar
channel. The vector channel shows some temperature dependence, which seems to
be consistent with a temperature dependent low frequency peak related to heavy
quark transport, plus a temperature independent term at \omega>0. These results
are in accord with previous calculations using the quenched approximation.Comment: 17 pages, 9 figures, 2 table
QCD thermodynamics with Wilson fermions
QCD is investigated at finite temperature using Wilson fermions in the fixed
scale approach. A 2+1 flavor stout and clover improved action is used at four
lattice spacings allowing for control over discretization errors. The light
quark masses in this first study are fixed to heavier than physical values. The
renormalized chiral condensate, quark number susceptibility and the Polyakov
loop is measured and the results are compared with the staggered formulation in
the fixed N_t approach. The Wilson results at the finest lattice spacing agree
with the staggered results at the highest N_t.Comment: 7 pages, Talk presented at the XXIX International Symposium on
Lattice Field Theory (Lattice 2011), July 10-16, 2011, Squaw Valley, Lake
Tahoe, California, US
The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling
The Z-disc, appearing as a fine dense line forming sarcomere boundaries in striated muscles, when studied in detail reveals crosslinked filament arrays that transmit tension and house myriads of proteins with diverse functions. At the Z-disc the barbed ends of the antiparallel actin filaments from adjoining sarcomeres interdigitate and are crosslinked primarily by layers of α-actinin. The Z-disc is therefore the site of polarity reversal of the actin filaments, as needed to interact with the bipolar myosin filaments in successive sarcomeres. The layers of α-actinin determine the Z-disc width: fast fibres have narrow (~30–50 nm) Z-discs and slow and cardiac fibres have wide (~100 nm) Z-discs. Comprehensive reviews on the roles of the numerous proteins located at the Z-disc in signalling and disease have been published; the aim here is different, namely to review the advances in structural aspects of the Z-disc
Extramuscular myofascial force transmission alters substantially the acute effects of surgical aponeurotomy: assessment by finite element modeling
Effects of extramuscular myofascial force transmission on the acute effects of aponeurotomy were studied using finite element
modeling and implications of such effects on surgery were discussed. Aponeurotomized EDL muscle of the rat was modeled in
two conditions: (1) fully isolated (2) with intact extramuscular connections. The specific goal was to assess the alterations
in muscle length-force characteristics in relation to sarcomere length distributions and to investigate how the mechanical
mechanism of the intervention is affected if the muscle is not isolated. Major effects of extramuscular myofascial force transmission
were shown on muscle length-force characteristics. In contrast to the identical proximal and distal forces of the aponeurotomized
isolated muscle, substantial proximo-distal force differences were shown for aponeurotomized muscle with extramuscular connections
(for all muscle lengths F
dist > F
prox after distal muscle lengthening). Proximal optimal length did not change whereas distal optimal length was lower (by 0.5 mm).
The optimal forces of the aponeurotomized muscle with extramuscular connections exerted at both proximal and distal tendons
were lower than that of isolated muscle (by 15 and 7%, respectively). The length of the gap separating the two cut ends of
the intervened aponeurosis decreases substantially due to extramuscular myofascial force transmission. The amplitude of the
difference in gap length was muscle length dependent (maximally 11.6% of the gap length of the extramuscularly connected muscle).
Extramuscular myofascial force transmission has substantial effects on distributions of lengths of sarcomeres within the muscle
fiber populations distal and proximal to the location of intervention: (a) Within the distal population, the substantial sarcomere
shortening at the proximal ends of muscle fibers due to the intervention remained unaffected however, extramuscular myofascial
force transmission caused a more pronounced serial distribution towards the distal ends of muscle fibers. (b) In contrast,
extramuscular myofascial force transmission limits the serial distribution of sarcomere lengths shown for the aponeurotomized
isolated muscle in the proximal population. Fiber stress distributions showed that extramuscular myofascial force transmission
causes most sarcomeres within the aponeurotomized muscle to attain lengths favorable for higher force exertion. It is concluded
that acute effects of aponeurotomy on muscular mechanics are affected greatly by extramuscular myofascial force transmission.
Such effects have important implications for the outcome of surgery performed to improve impeded function since muscle in
vivo is not isolated both anatomically and mechanically
Conformation-regulated mechanosensory control via titin domains in cardiac muscle
The giant filamentous protein titin is ideally positioned in the muscle sarcomere to sense mechanical stimuli and transform them into biochemical signals, such as those triggering cardiac hypertrophy. In this review, we ponder the evidence for signaling hotspots along the titin filament involved in mechanosensory control mechanisms. On the way, we distinguish between stress and strain as triggers of mechanical signaling events at the cardiac sarcomere. Whereas the Z-disk and M-band regions of titin may be prominently involved in sensing mechanical stress, signaling hotspots within the elastic I-band titin segment may respond primarily to mechanical strain. Common to both stress and strain sensor elements is their regulation by conformational changes in protein domains
Sponge spicules as blueprints for the biofabrication of inorganic–organic composites and biomaterials
While most forms of multicellular life have developed a calcium-based skeleton, a few specialized organisms complement their body plan with silica. However, of all recent animals, only sponges (phylum Porifera) are able to polymerize silica enzymatically mediated in order to generate massive siliceous skeletal elements (spicules) during a unique reaction, at ambient temperature and pressure. During this biomineralization process (i.e., biosilicification) hydrated, amorphous silica is deposited within highly specialized sponge cells, ultimately resulting in structures that range in size from micrometers to meters. Spicules lend structural stability to the sponge body, deter predators, and transmit light similar to optic fibers. This peculiar phenomenon has been comprehensively studied in recent years and in several approaches, the molecular background was explored to create tools that might be employed for novel bioinspired biotechnological and biomedical applications. Thus, it was discovered that spiculogenesis is mediated by the enzyme silicatein and starts intracellularly. The resulting silica nanoparticles fuse and subsequently form concentric lamellar layers around a central protein filament, consisting of silicatein and the scaffold protein silintaphin-1. Once the growing spicule is extruded into the extracellular space, it obtains final size and shape. Again, this process is mediated by silicatein and silintaphin-1, in combination with other molecules such as galectin and collagen. The molecular toolbox generated so far allows the fabrication of novel micro- and nanostructured composites, contributing to the economical and sustainable synthesis of biomaterials with unique characteristics. In this context, first bioinspired approaches implement recombinant silicatein and silintaphin-1 for applications in the field of biomedicine (biosilica-mediated regeneration of tooth and bone defects) or micro-optics (in vitro synthesis of light waveguides) with promising results
Molecular tools for the study of titin's differential expression
Although vertebrate genomes appear to contain only one titin gene, a large variety of quite distinct titin isoforms are expressed in striated muscle tissues. The isoforms appear to be generated by a series of complex, not yet fully characterized differential splicing mechanisms. Here, we provide an overview of the titin-specific antibodies that have been raised by our laboratory to study individual differentially expressed isoforms of titin. The staining patterns obtained in different tissues will contribute to the identification of both the particular titin isoforms that are expressed in the different tissues, as well as their intracellular distributions. In addition, antibodies to titin that are available are rapidly allowing for the refinement of our knowledge of titin's elastic spring properties. Knowledge of the nature and structure of vertebrate titins that may also be expressed in nonmuscle tissues may be broadened using these antibodies
- …