72 research outputs found

    VectorBase: a data resource for invertebrate vector genomics

    Get PDF
    VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data

    Establishment of computational biology in Greece and Cyprus: Past, present, and future.

    Get PDF
    We review the establishment of computational biology in Greece and Cyprus from its inception to date and issue recommendations for future development. We compare output to other countries of similar geography, economy, and size—based on publication counts recorded in the literature—and predict future growth based on those counts as well as national priority areas. Our analysis may be pertinent to wider national or regional communities with challenges and opportunities emerging from the rapid expansion of the field and related industries. Our recommendations suggest a 2-fold growth margin for the 2 countries, as a realistic expectation for further expansion of the field and the development of a credible roadmap of national priorities, both in terms of research and infrastructure funding

    XPF interacts with TOP2B for R-loop processing and DNA looping on actively transcribed genes

    Get PDF
    Co-transcriptional RNA-DNA hybrids can not only cause DNA damage threatening genome integrity but also regulate gene activity in a mechanism that remains unclear. Here, we show that the nucleotide excision repair factor XPF interacts with the insulator binding protein CTCF and the cohesin subunits SMC1A and SMC3, leading to R-loop-dependent DNA looping upon transcription activation. To facilitate R-loop processing, XPF interacts and recruits with TOP2B on active gene promoters, leading to double-strand break accumulation and the activation of a DNA damage response. Abrogation of TOP2B leads to the diminished recruitment of XPF, CTCF, and the cohesin subunits to promoters of actively transcribed genes and R-loops and the concurrent impairment of CTCF-mediated DNA looping. Together, our findings disclose an essential role for XPF with TOP2B and the CTCF/cohesin complex in R-loop processing for transcription activation with important ramifications for DNA repair-deficient syndromes associated with transcription-associated DNA damage

    VectorBase: a home for invertebrate vectors of human pathogens

    Get PDF
    VectorBase () is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever

    Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project

    Get PDF
    BACKGROUND: Open access to databases of information generated by the research community can synergize individual efforts and are epitomized by the genome mapping projects. Open source models for outputs of scientific research funded by tax-payers and charities are becoming the norm. This has yet to be extended to malaria epidemiology and control. METHODS: The exhaustive searches and assembly process for a global database of malaria parasite prevalence as part of the Malaria Atlas Project (MAP) are described. The different data sources visited and how productive these were in terms of availability of parasite rate (PR) data are presented, followed by a description of the methods used to assemble a relational database and an associated geographic information system. The challenges facing spatial data assembly from varied sources are described in an effort to help inform similar future applications. RESULTS: At the time of writing, the MAP database held 3,351 spatially independent PR estimates from community surveys conducted since 1985. These include 3,036 Plasmodium falciparum and 1,347 Plasmodium vivax estimates in 74 countries derived from 671 primary sources. More than half of these data represent malaria prevalence after the year 2000. CONCLUSION: This database will help refine maps of the global spatial limits of malaria and be the foundation for the development of global malaria endemicity models as part of MAP. A widespread application of these maps is envisaged. The data compiled and the products generated by MAP are planned to be released in June 2009 to facilitate a more informed approach to global malaria control

    Enantio-selectivity of human nucleoside monophosphate kinases

    No full text
    Over recent years, there has been a renewed interest in the development of L-nucleosides as safe and efficacious drugs for the treatment of viral infections. Biological activity of these compounds requires phosphorylation to their triphosphate form, involving nucleoside monophosphate kinases in the second step. In order to characterize the activation pathway of L-nucleosides of the pyrimidine series, we studied the enantio-selectivity of human uridylate-cytidylate and thymidylate kinases. The results showed that these enzymes are only weakly enantio-selective and are thus probably involved in the activation of L-nucleosides in vivo. An activation pathway for telbivudine (L-dT) was therefore proposed.status: publishe

    Serum level of cartilage oligomeric matrix protein is lower in children with idiopathic scoliosis than in non-scoliotic controls

    No full text
    The etiology of idiopathic scoliosis remains unknown, but growth is a risk factor for progression. Growth pattern differs in children with and without scoliosis. Cartilage oligomeric matrix protein (COMP) may be associated with scoliosis and growth. We, therefore, studied COMP in children with and without idiopathic scoliosis. We included 105 children, with mean age 14.4 years (range 10-16), under observation or treatment for idiopathic scoliosis, and 103 children from an age-matched population-based cohort. COMP was measured in serum at the time of inclusion. Growth velocity was estimated from repeated height measurements. T tests, analysis of covariance or linear regression were used for statistical comparisons. COMP was mean (SD) 11 (5) units/liter (U/L) in children with scoliosis and 13 (5) U/L in the control cohort (p = 0.005, adjusted for sex and sampling time of the day). When patients and controls were analyzed together, high COMP was correlated with high growth velocity (beta = 0.19, p = 0.003). When patients and controls were analyzed separately, COMP was correlated with growth velocity in children with scoliosis (beta = 0.27, p = 0.007), but not in children without scoliosis (beta = 0.02, p = 0.83) (all analyses adjusted for age, sex and sampling time). Low COMP was significantly correlated with large curve size in children with scoliosis (beta = -0.29, p = 0.003), but not after adjustment for age, sex and sampling time (beta = -0.16; p = 0.14). COMP was lower in children with idiopathic scoliosis than in a control cohort. In children with scoliosis, high COMP was modestly correlated with high growth velocity, but not with curve severity
    • …
    corecore