2,818 research outputs found

    Radiative production of the Lambda(1405) resonance in K collisions on protons and nuclei

    Full text link
    We have carried a theoretical study of the K^- p\to M B \gamma reaction with M B = K^-p, \bar{K}^0 n, \pi^- \Sigma^+, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^0 \Lambda, for K^- lab. momenta between 200 and 500 MeV/c, using a chiral unitary approach for the strong K^-p interaction with its coupled channels. The \Lambda(1405) resonance, which is generated dynamically in this approach, shows up clearly in the d\sigma/dM_I spectrum, providing new tests for chiral symmetry and the unitary approach, as well as information regarding the nature of the resonance. The photon detection alone, summing all channels, is shown to reproduce quite accurately the strength and shape of the \Lambda(1405) resonance. Analogous reactions in nuclei can provide much information on the properties of this resonance in a nuclear medium.Comment: 11 pages, 3 postscripts figure

    Pentaquark Θ+\Theta^+ in nuclear matter and Θ+\Theta^+ hypernuclei

    Full text link
    We study the properties of the Θ+\Theta^+ in nuclear matter and Θ+\Theta^+ hypernuclei within the quark mean-field (QMF) model, which has been successfully used for the description of ordinary nuclei and Λ\Lambda hypernuclei. With the assumption that the non-strange mesons couple only to the uu and dd quarks inside baryons, a sizable attractive potential of the Θ+\Theta^+ in nuclear matter is achieved as a consequence of the cancellation between the attractive scalar potential and the repulsive vector potential. We investigate the Θ+\Theta^+ single-particle energies in light, medium, and heavy nuclei. More bound states are obtained in Θ+\Theta^+ hypernuclei in comparison with those in Λ\Lambda hypernuclei.Comment: 16 pages, 5 figure

    Strange meson-nucleon states in the quark potential model

    Get PDF
    The quark potential model and resonating group method are used to investigate the KˉN\bar{K}N bound states and/or resonances. The model potential consists of the t-channel and s-channel one-gluon exchange potentials and the confining potential with incorporating the QCD renormalization correction and the spin-orbital suppression effect in it. It was shown in our previous work that by considering the color octet contribution, use of this model to investigate the KNKN low energy elastic scattering leads to the results which are in pretty good agreement with the experimental data. In this paper, the same model and method are employed to calculate the masses of the KˉN\bar{K}N bound systems. For this purpose, the resonating group equation is transformed into a standard Schr\"odinger equation in which a nonlocal effective KˉN\bar{K}N interaction potential is included. Solving the Schr\"odinger equation by the variational method, we are able to reproduce the masses of some currently concerned KˉN\bar{K}N states and get a view that these states possibly exist as KˉN\bar{K}N molecular states. For the KNKN system, the same calculation gives no support to the existence of the resonance Θ+(1540)\Theta ^{+}(1540) which was announced recently.Comment: 15 pages, 4 figure

    Description of Drip-Line Nuclei within Relativistic Mean-Field Plus BCS Approach

    Full text link
    Recently it has been demonstrated, considering Ni and Ca isotopes as prototypes, that the relativistic mean-field plus BCS (RMF+BCS) approach wherein the single particle continuum corresponding to the RMF is replaced by a set of discrete positive energy states for the calculation of pairing energy provides a good approximation to the full relativistic Hartree-Bogoliubov (RHB) description of the ground state properties of the drip-line neutron rich nuclei. The applicability of RMF+BCS is essentially due to the fact that the main contribution to the pairing correlations is provided by the low-lying resonant states. General validity of this approach is demonstrated by the detailed calculations for the ground state properties of the chains of isotopes of O, Ca, Ni, Zr, Sn and Pb nuclei. The TMA and NL-SH force parameter sets have been used for the effective mean-field Lagrangian. Comprehensive results for the two neutron separation energy, rms radii, single particle pairing gaps and pairing energies etc. are presented. The Ca isotopes are found to exhibit distinct features near the neutron drip line whereby it is found that further addition of neutrons causes a rapid increase in the neutron rms radius with almost no increase in the binding energy, indicating the occurrence of halos. A comparison of these results with the available experimental data and with the recent continuum relativistic Hartree-Bogoliubov (RCHB) calculations amply demonstrates the validity and usefulness of this fast RMF+BCS approach.Comment: 59 pages, 40 figure

    Rho-Nucleon Tensor Coupling and Charge-Exchange Resonances

    Full text link
    The Gamow-Teller resonances are discussed in the context of a self-consistent RPA, based on the relativistic mean field theory. We inquire on the possibility of substituting the phenomenological Landau-Migdal force by a microscopic nucleon-nucleon interaction generated from the rho-nucleon tensor coupling. The effect of this coupling turns out to be very small when the short range correlations are not taken into account, but too large when these correlations are simulated by the simple extraction of the contact terms from the resulting nucleon-nucleon interaction.Comment: 15 pages, LaTeX, 2 figures; extended text, improved figures, new references added, the version appearing in Phys.Lett.

    Analyzing powers in inclusive pion production at high energy and the nucleon spin structure

    Get PDF
    Analyzing powers in inclusive pion production in high energy transversely polarized proton-proton collisions are studied theoretically in the framework of the quark recombination model. Calculations by assuming the SU(6) spin-flavor symmetry for the nucleon structure disagree with the experiments. We solve this difficulty by taking into account the %We overcome this difficulty by taking into account the realistic spin distribution functions of the nucleon, which differs from the SU(6) expectation at large xx, %but coincides with a perturbative QCD constraint on the ratio of the unpolarized valence distributions, u/d5u/d \to 5 as x1x \to 1. We also discuss the kaon spin asymmetry and find AN(K+)=AN(K0)A_N(K^+) = -A_N(K^0) in the polarized proton-proton collisions at large xFx_F.Comment: 13 pages, 4 figures, late

    eta-Nucleus interactions and in-medium properties of N*(1535) in chiral models

    Full text link
    The properties of eta-nucleus interaction and their experimental consequences are investigated with eta-nucleus optical potentials obtained by postulating the N*(1535) dominance for eta-N system. The N*(1535) properties in nuclear medium are evaluated by two kinds of chiral effective models based on distinct pictures of N*(1535). We find that these two models provide qualitatively different optical potentials of the eta meson, reflecting the in-medium properties of N*(1535) in these models. In order to compare these models in physical observables, we calculate spectra of (d,3He) reactions for the eta mesic nucleus formation with various kinds of target nuclei. We show that the (d,3He) spectra obtained in these models are significantly different and are expected to be distinguishable in experiments.Comment: 24 pages, 8 figure

    Chiral SU(3) Bethe Salpeter Model: Extension to SU(6) and SU(8) Spin-Flavor Symmetries

    Full text link
    Consistent SU(6) and SU(8) spin-flavor extensions of the SU(3) flavor Weinberg-Tomozawa (WT) meson-baryon chiral Lagrangian are constructed, which incorporate vector meson degrees of freedom. In the charmless sector, the on-shell approximation to the Bethe-Salpeter (BS) approach successfully reproduces previous SU(3) WT results for the lowest-lying s--wave negative parity baryon resonances. It also provides some information on the dynamics of heavier ones and of the lightest d-wave negative parity resonances, as e.g. the Lambda(1520). For charmed baryons the scheme is consistent with heavy quark symmetry, and our preliminary results in the strangeness-less charm C=+1 sector describe the main features of the three-star J^P=1/2^- Lambda_c(2595) and J^P=3/2^- Lambda_c(2625) resonances. We also find a second broad J^P=1/2^- state close to the Lambda_c(2595)Comment: Presented at Chiral07: Chiral Symmetry in Hadron and Nuclear Physics November 13-16, 2007, Osaka University, Japa

    Quark mean field model with density dependent couplings for finite nuclei

    Get PDF
    The quark mean field model, which describes the nucleon using the constituent quark model, is applied to investigate the properties of finite nuclei. The couplings of the scalar and vector mesons with quarks are made density dependent through direct coupling to the scalar field so as to reproduce the relativistic Brueckner-Hartree-Fock results of nuclear matter. The present model provides satisfactory results on the properties of spherical nuclei, and predicts an increasing size of the nucleon as well as a reduction of the nucleon mass in the nuclear environmentComment: 8 pages, REVTeX, 8 ps figures, accepted for publication in Phys. Rev.
    corecore