131 research outputs found

    Ultraviolet Irradiation Induces the Accumulation of Chondroitin Sulfate, but Not Other Glycosaminoglycans, in Human Skin

    Get PDF
    Ultraviolet (UV) light alters cutaneous structure and function. Prior work has shown loss of dermal hyaluronan after UV-irradiation of human skin, yet UV exposure increases total glycosaminoglycan (GAG) content in mouse models. To more fully describe UV-induced alterations to cutaneous GAG content, we subjected human volunteers to intermediate-term (5 doses/week for 4 weeks) or single-dose UV exposure. Total dermal uronyl-containing GAGs increased substantially with each of these regimens. We found that UV exposure substantially increased dermal content of chondroitin sulfate (CS), but not hyaluronan, heparan sulfate, or dermatan sulfate. UV induced the accumulation of both the 4-sulfated (C4S) and 6-sulfated (C6S) isoforms of CS, but in distinct distributions. Next, we examined several CS proteoglycan core proteins and found a significant accumulation of dermal and endothelial serglycin, but not of decorin or versican, after UV exposure. To examine regulation in vitro, we found that UVB in combination with IL-1α, a cytokine upregulated by UV radiation, induced serglycin mRNA in cultured dermal fibroblasts, but did not induce the chondroitin sulfate synthases. Overall, our data indicate that intermediate-term and single-dose UVB exposure induces specific GAGs and proteoglycan core proteins in human skin in vivo. These molecules have important biologic functions and contribute to the cutaneous response to UV

    Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells

    Get PDF
    RECK is a novel tumour suppressor gene that negatively regulates matrix metalloproteinases (MMPs) and inhibits tumour invasion, angiogenesis and metastasis. In the present study, we investigated the effects of epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, on the methylation status of the RECK gene and cancer invasion in oral squamous cell carcinoma cell lines. Our results showed that treatment of oral cancer cells with EGCG partially reversed the hypermethylation status of the RECK gene and significantly enhanced the expression level of RECK mRNA. Inhibition of MMP-2 and MMP-9 levels was also observed in these cells after treatment with EGCG. Interestingly, EGCG significantly suppressed cancer cell-invasive ability by decreasing the number of invasive foci (P<0.0001) as well as invasion depth (P<0.005) in three-dimensional collagen invasion model. Although further investigation is required to assess the extent of contribution of RECK on MMPs to the suppression of invasive behaviour, these results support the conclusion that EGCG plays a key role in suppressing cell invasion through multiple mechanisms, possibly by demethylation effect on MMP inhibitors such as RECK

    Glandular Odontogenic Cyst: Report of Two Cases and Review of Literature

    Get PDF
    Glandular odontogenic cyst (GOC) is an uncommon jaw bone cyst of odontogenic origin described in 1987 by Gardner et al. It is a cyst having an unpredictable and potentially aggressive behaviour. It also has the propensity to grow to a large size and tendency to recur with only 111 cases having been reported thus far. The first case occurred in a 42-year-old female and presented as a localized swelling extending from 19 to 29 regions. There was a history of traumatic injury at the site. There was evidence of bicortical expansion and radiographs revealed a multilocular radiolucency. The second case occurred in a 21-year-old male, as a large swelling in the mandible and radiograph revealed radiolucency in the region. On histopathological examination, these lesions were diagnosed as GOC. It was concluded that, two cases submitted by us correlate with the existing literature that GOC’s affect more commonly in the middle age group, having predilection for mandible and that trauma could be a precipitating factor for its occurrence. The increased recurrence rates can be due to its intrinsic biological behavior, multilocularity of the cyst, and incomplete removal of the lining following conservative treatment

    Analysis and characterization of heparin impurities

    Get PDF
    This review discusses recent developments in analytical methods available for the sensitive separation, detection and structural characterization of heparin contaminants. The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007–2008 spawned a global crisis resulting in extensive revisions to the pharmacopeia monographs on heparin and prompting the FDA to recommend the development of additional physicochemical methods for the analysis of heparin purity. The analytical chemistry community quickly responded to this challenge, developing a wide variety of innovative approaches, several of which are reported in this special issue. This review provides an overview of methods of heparin isolation and digestion, discusses known heparin contaminants, including OSCS, and summarizes recent publications on heparin impurity analysis using sensors, near-IR, Raman, and NMR spectroscopy, as well as electrophoretic and chromatographic separations

    Hearts from Mice Fed a Non-Obesogenic High-Fat Diet Exhibit Changes in Their Oxidative State, Calcium and Mitochondria in Parallel with Increased Susceptibility to Reperfusion Injury

    Get PDF
    High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown.To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury.Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet.This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults

    Maturation of complex synaptic connections of layer 5 cortical axons in the posterior thalamic nucleus requires SNAP25

    No full text
    Synapses are able to form in the absence of neuronal activity, but how is their subsequent maturation affected in the absence of regulated vesicular release? We explored this question using 3D electron microscopy and immunoelectron microscopy analyses in the large, complex synapses formed between cortical sensory efferent axons and dendrites in the posterior thalamic nucleus. Using a Synaptosome-associated protein 25 conditional knockout (Snap25 cKO), we found that during the first 2 postnatal weeks the axonal boutons emerge and increase in the size similar to the control animals. However, by P18, when an adult-like architecture should normally be established, axons were significantly smaller with 3D reconstructions, showing that each Snap25 cKO bouton only forms a single synapse with the connecting dendritic shaft. No excrescences from the dendrites were formed, and none of the normally large glomerular axon endings were seen. These results show that activity mediated through regulated vesicular release from the presynaptic terminal is not necessary for the formation of synapses, but it is required for the maturation of the specialized synaptic structures between layer 5 corticothalamic projections in the posterior thalamic nucleus
    corecore