193 research outputs found

    Cutting simulation of manifold volumetric meshes

    Full text link

    Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination.

    Get PDF
    Initiation of V(D)J recombination critically relies on the formation of an accessible chromatin structure at recombination signal sequences (RSSs) but how this accessibility is generated is poorly understood. Immunoglobulin light-chain loci normally undergo recombination in pre-B cells. We show here that equipping (earlier) pro-B cells with the increased pre-B-cell levels of just one transcription factor, IRF4, triggers the entire cascade of events leading to premature light-chain recombination. We then used this finding to dissect the critical events that generate RSS accessibility and show that the chromatin modifications previously associated with recombination are insufficient. Instead, we establish that non-coding transcription triggers IgL RSS accessibility and find that the accessibility is transient. Transcription transiently evicts H2A/H2B dimers, releasing 35-40 bp of nucleosomal DNA, and we demonstrate that H2A/H2B loss can explain the RSS accessibility observed in vivo. We therefore propose that the transcription-mediated eviction of H2A/H2B dimers is an important mechanism that makes RSSs accessible for the initiation of recombination

    Five key attributes can increase marine protected areas performance for small-scale fisheries management

    Get PDF
    Marine protected areas (MPAs) have largely proven to be effective tools for conserving marine ecosystem, while socio-economic benefits generated by MPAs to fisheries are still under debate. Many MPAs embed a no-take zone, aiming to preserve natural populations and ecosystems, within a buffer zone where potentially sustainable activities are allowed. Small-scale fisheries (SSF) within buffer zones can be highly beneficial by promoting local socio-economies. However, guidelines to successfully manage SSFs within MPAs, ensuring both conservation and fisheries goals, and reaching a win-win scenario, are largely unavailable. From the peer-reviewed literature, grey-literature and interviews, we assembled a unique database of ecological, social and economic attributes of SSF in 25 Mediterranean MPAs. Using random forest with Boruta algorithm we identified a set of attributes determining successful SSFs management within MPAs. We show that fish stocks are healthier, fishermen incomes are higher and the social acceptance of management practices is fostered if five attributes are present (i.e. high MPA enforcement, presence of a management plan, fishermen engagement in MPA management, fishermen representative in the MPA board, and promotion of sustainable fishing). These findings are pivotal to Mediterranean coastal communities so they can achieve conservation goals while allowing for profitable exploitation of fisheries resources

    Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain‐containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross‐linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane‐bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine‐induced hippocampal inward currents in rat brain slices and decreases nicotine‐induced extracellular signal‐regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChR‐mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post‐natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. [Image: see text] Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotine‐induced ERK phosphorylation and attenuates nicotine‐induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain

    Effects of Fluids on the Macro- and Microcirculations.

    Get PDF
    This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2018. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2018. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901

    Gene expression analysis indicates CB1 receptor upregulation in the hippocampus and neurotoxic effects in the frontal cortex 3 weeks after single-dose MDMA administration in Dark Agouti rats.

    Get PDF
    BACKGROUND: 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is a widely used recreational drug known to impair cognitive functions on the long-run. Both hippocampal and frontal cortical regions have well established roles in behavior, memory formation and other cognitive tasks and damage of these regions is associated with altered behavior and cognitive functions, impairments frequently described in heavy MDMA users. The aim of this study was to examine the hippocampus, frontal cortex and dorsal raphe of Dark Agouti rats with gene expression arrays (Illumina RatRef bead arrays) looking for possible mechanisms and new candidates contributing to the effects of a single dose of MDMA (15 mg/kg) 3 weeks earlier. RESULTS: The number of differentially expressed genes in the hippocampus, frontal cortex and the dorsal raphe were 481, 155, and 15, respectively. Gene set enrichment analysis of the microarray data revealed reduced expression of 'memory' and 'cognition', 'dendrite development' and 'regulation of synaptic plasticity' gene sets in the hippocampus, parallel to the upregulation of the CB1 cannabinoid- and Epha4, Epha5, Epha6 ephrin receptors. Downregulated gene sets in the frontal cortex were related to protein synthesis, chromatin organization, transmembrane transport processes, while 'dendrite development', 'regulation of synaptic plasticity' and 'positive regulation of synapse assembly' gene sets were upregulated. Changes in the dorsal raphe region were mild and in most cases not significant. CONCLUSION: The present data raise the possibility of new synapse formation/synaptic reorganization in the frontal cortex three weeks after a single neurotoxic dose of MDMA. In contrast, a prolonged depression of new neurite formation in the hippocampus is suggested by the data, which underlines the particular vulnerability of this brain region after the drug treatment. Finally, our results also suggest the substantial contribution of CB1 receptor and endocannabinoid mediated pathways in the hippocampal impairments. Taken together the present study provides evidence for the participation of new molecular candidates in the long-term effects of MDMA

    H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation

    Get PDF
    The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z[superscript AP3]) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z[superscript AP3] interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z[superscript AP3] was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z[superscript AP3] ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z[superscript AP3] ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z[superscript AP3] displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z[superscript AP3] mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests that the divergent residues in the H2A.Z acidic patch comprise a unique domain that couples control of chromatin dynamics to the regulation of developmental gene expression patterns during lineage commitment.Massachusetts Life Sciences Center (David H. Koch Institute for Integrative Cancer Research at MIT Core Grant P30-CA14051)National Science Foundation (U.S.). Emergent Behaviors of Integrated Cellular Systems (Grant CBET-0939511)MIT Faculty Start-up FundMassachusetts Institute of Technology. Computational and Systems Biology Initiative (Merck & Co. Postdoctoral Fellowship
    corecore