tional 83% and 52% risk of hyperaemia respectively. Based on the current meta-analyses, latanoprost treated patients had least risk of developing hyperaemia and bimatoprost the highest risk.

SENSORY SYSTEMS DISORDERS—Cost Studies

PSS25

COST-EFFECTIVENESS OF ETANERCEPT AND EFALIZUMAB IN THE MANAGEMENT OF MODERATE AND SEVERE PLAQUE PSORIASIS

Ortonne JP1, Feneron D2, Daures JP1, Ollivier AL1, Thiriet C1, Maurel F1, Le Pen C3

1IHôpital Archez II, Nice, France, 2IMS health, Puteaux, France, 3CHU de Nimes, Nimes, France, 4Wyeth Pharmaceuticals, Paris La Defense, France, 5IMS Health, Puteaux, France, 6Dauphine University, Paris, France

OBJECTIVES: To assess the cost-effectiveness of intermittent therapy with etanercept at a starting dose of 25 mg twice a week (biw) or 30 mg biw compared to efalizumab and non-systemic therapy (NST) in patients with moderate-to-severe plaque psoriasis in France. **METHODS:** An economic model was developed to estimate the incremental cost per quality-adjusted life-year (QALY) gained. Patients considered had a Psoriasis Area Severity Index (PASI) >10 at baseline. Four therapeutic strategies were considered: 1)etanercept given intermittently (until remission defined by PASI 90 or 50 mg: 0.82, 1.09, 1.35 and 1.46. Costs per patient were estimated from the French Third Payer perspective. A stochastic analysis using bootstrap re-sampling was conducted to generate 95% confidence intervals completed by one-way sensitivity analyses on treatment response to etanercept at 12 weeks, generating 95% confidence intervals completed by one-way sensitivity analyses using bootstrap re-sampling was conducted to estimate the incremental cost per quality-adjusted life-year (QALY) gained. Patients considered had a Psoriasis Area Severity Index (PASI) >10 at baseline. Four therapeutic strategies were considered: 1)etanercept given intermittently (until remission defined by PASI 90 or with maximum treatment period of 24 weeks) either 25 mg biw; 2)etanercept 50 mg biw for 12 weeks followed by 25 mg biw; 3)efalizumab 1 mg/kg once weekly; and 4)NST. Response rates were taken from clinical trials for each agent and were extrapolated to a time horizon of ten years using a Markov process. Costs were estimated from the French Third Payer perspective. A stochastic analysis using bootstrap re-sampling was conducted to generate 95% confidence intervals completed by one-way sensitivity analyses on treatment response to etanercept at 12 weeks, length of free treatment period, costs of visits, number of hospitalisations, discount rates. RESULTS: Over ten years, the QALYs gained were respectively for NST, efalizumab, etanercept 25 mg and 50 mg: 0.82, 1.09, 1.35 and 1.46. Costs per patient were respectively €34,091, €36,437 and €38,572. The incremental cost-effectiveness ratio (ICER) is €3,642. Sensitivity analyses—deterministic and probabilistic—demonstrated the robustness of the model results. **CONCLUSIONS:** The study suggests that in Austria, the treatment of age-related macular degeneration with Ranibizumab is a cost-effective strategy.

PSS26

PHARMACOECONOMIC EVALUATION OF RANIBIZUMAB IN THE TREATMENT OF AGE-RELATED MACULAR DEGENERATION IN AUSTRIA

Walter E1, Brennig C1, Moeremans K1, Thomas V2

1IPF—Institute for Pharmaceutical Research, Vienna, Austria, 2IMS HEOR, Brussels, Belgium, 3Novartis Pharma AG, Basel, Switzerland

OBJECTIVES: Age-related macular degeneration (AMD) is one of the most common eye diseases causing vision loss in Western industrial nations. In Austria, about 25,000 people experience blindness in one or both eyes due to AMD. The incidence averages 3000 to 4000 people. The purpose of this pharmaco-economic analysis was to evaluate the cost-effectiveness of the treatment of AMD with Ranibizumab versus Verteporfin. **METHODS:** The analysis was conducted using a Markov Model designed to be flexible to target populations and was adapted to Austrian situation. Clinical data included in the model is based on three clinical trials (MARINA, ANCHOR and PIER). Evaluation of the effectiveness of therapeutic alternatives was determined by ‘Vision Years’ and ‘QALY’s’. The period under consideration was 10 years and the analysis was performed from the perspective of the Austrian health care system. Costs are represented using data from 2007. Treatment paths, resource consumption, costs as well as mortality data have been adapted for Austria. **RESULTS:** Within the 10-year period under consideration, the costs per QALY for Ranibizumab amount to €9,267 and to €8,795 for Verteporfin. Treatment with Ranibizumab leads to a QALY of 4.2, that with Verteporfin to a QALY of 3.91. The incremental cost-effectiveness-ratio (ICER) is €15,647. The costs per Vision Year amounts to €13,641 (2.85 VX) for Ranibizumab and €21,331 (1.61 VX) in the Verteporfine-group. The incremental cost-effectiveness-ratio (ICER) is €3,642. Sensitivity analyses—deterministic and probabilistic—demonstrated the robustness of the model results. **CONCLUSIONS:** The study suggests that in Austria, the treatment of age-related macular degeneration with Ranibizumab is a cost-effective strategy.