1,379 research outputs found

    Modelling seasonal nutrient inputs from non-point sources across large catchments of importance to aquaculture

    Get PDF
    Accumulation of nutrients in aquatic systems can have negative impacts on water quality, which can then affect the performance and impact of an aquaculture system. Non-point sources (NPS) and runoff from different land use practices are a major contributor of nutrients to the aquatic environment. However, NPS loading is difficult to identify, and monitoring schemes are often insufficient, particularly across large areas. Aquaculture production areas often extend across large catchments, basins and deltas and knowledge of where there could potentially be higher nutrient loads in the environment would be advantageous to inform strategic site selection and management decisions. This study developed seasonal models within a Geographic Information system (GIS) that can be applied to large catchments of importance to aquaculture to identify areas at risk of nutrient loading from NPS which should be prioritized by monitoring schemes. The models were applied to case study areas in Bangladesh, China, Thailand and Vietnam. The results of the individual models reveal changes in the spatial distribution of priority areas depending on the nutrient (nitrogen or phosphorus) and season. The modelling approach presented here has the advantage that it can be applied to large areas without the need for complex data sets. The model and outputs can also be used to assess impacts of land use and land use change on aquaculture, determine site suitability, establish zones, inform carrying capacity studies and identify potential production and disease risks

    Epidemiology and fitness effects of wood mouse herpesvirus in a natural host population

    Get PDF
    Rodent gammaherpesviruses have become important models for understanding human herpesvirus diseases. In particular, interactions between murid herpesvirus 4 and Mus musculus (a non-natural host species) have been extensively studied under controlled laboratory conditions. However, several fundamental aspects of murine gammaherpesvirus biology are not well understood, including how these viruses are transmitted from host to host, and their impacts on host fitness under natural conditions. Here, we investigate the epidemiology of a gammaherpesvirus in free-living wood mice (Apodemus sylvaticus) and bank voles (Myodes glareolus) in a 2-year longitudinal study. Wood mouse herpesvirus (WMHV) was the only herpesvirus detected and occurred frequently in wood mice and also less commonly in bank voles. Strikingly, WMHV infection probability was highest in reproductively active, heavy male mice. Infection risk also showed a repeatable seasonal pattern, peaking in spring and declining through the summer. We show that this seasonal decline can be at least partly attributed to reduced recapture of WMHV-infected adults. These results suggest that male reproductive behaviours could provide an important natural route of transmission for these viruses. They also suggest that gammaherpesvirus infection may have significant detrimental effects in wild hosts, questioning the view that these viruses have limited impacts in natural, co-evolved host species

    Selective Pressure of Antibiotic Pollution on Bacteria of Importance to Public Health

    Get PDF
    Background: Many bacteria of clinical importance survive and may grow in different environments. Antibiotic pollution may exert on them a selective pressure leading to an increase in the prevalence of resistance. Objectives: In this study we sought to determine whether environmental concentrations of antibiotics and concentrations representing action limits used in environmental risk assessment may exert a selective pressure on clinically relevant bacteria in the environment. Methods: We used bacterial inhibition as an assessment end point to link antibiotic selective pressures to the prevalence of resistance in bacterial populations. Species sensitivity distributions were derived for three antibiotics by fitting log-logistic models to end points calculated from minimum inhibitory concentration (MIC) distributions based on worldwide data collated by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). To place bacteria represented in these distributions in a broader context, we performed a brief phylogenetic analysis. The potentially affected fraction of bacterial genera at measured environmental concentrations of antibiotics and environmental risk assessment action limits was used as a proxy for antibiotic selective pressure. Measured environmental concentrations and environmental risk assessment action limits were also directly compared to wild-type cut-off values. Results: The potentially affected fraction of bacterial genera estimated based on antibiotic concentrations measured in water environments is ≤ 7%. We estimated that measured environmental concentrations in river sediments, swine feces lagoons, liquid manure, and farmed soil inhibit wild-type populations in up to 60%, 92%, 100%, and 30% of bacterial genera, respectively. At concentrations used as action limits in environmental risk assessment, erythromycin and ciprofloxacin were estimated to inhibit wild-type populations in up to 25% and 76% of bacterial genera. Conclusions: Measured environmental concentrations of antibiotics, as well as concentrations representing environmental risk assessment action limits, are high enough to exert a selective pressure on clinically relevant bacteria that may lead to an increase in the prevalence of resistance

    Embracing additive manufacture: implications for foot and ankle orthosis design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The design of foot and ankle orthoses is currently limited by the methods used to fabricate the devices, particularly in terms of geometric freedom and potential to include innovative new features. Additive manufacturing (AM) technologies, where objects are constructed via a series of sub-millimetre layers of a substrate material, may present the opportunity to overcome these limitations and allow novel devices to be produced that are highly personalised for the individual, both in terms of fit and functionality.</p> <p>Two novel devices, a foot orthosis (FO) designed to include adjustable elements to relieve pressure at the metatarsal heads, and an ankle foot orthosis (AFO) designed to have adjustable stiffness levels in the sagittal plane, were developed and fabricated using AM. The devices were then tested on a healthy participant to determine if the intended biomechanical modes of action were achieved.</p> <p>Results</p> <p>The adjustable, pressure relieving FO was found to be able to significantly reduce pressure under the targeted metatarsal heads. The AFO was shown to have distinct effects on ankle kinematics which could be varied by adjusting the stiffness level of the device.</p> <p>Conclusions</p> <p>The results presented here demonstrate the potential design freedom made available by AM, and suggest that it may allow novel personalised orthotic devices to be produced which are beyond the current state of the art.</p

    Executive performance on the preschool executive task assessment in children with sickle cell anemia and matched controls

    Get PDF
    Executive deficits are commonly reported in children with sickle cell anemia. Earlier identification of executive deficits would give more scope for intervention, but this cognitive domain has not been routinely investigated due to a lack of age-appropriate tasks normed for preschool children. In particular, information relating to patient performance on an executive task that reflects an everyday activity in the classroom could provide important insight and practical recommendations for the classroom teacher at this key developmental juncture as they enter the academic domain. The performance of 22 children with sickle cell anemia was compared to 24 matched control children on the Preschool Executive Task Assessment. Findings reveal that children with sickle cell anemia are performing poorer than their matched peers on this multi-step assessment. In particular, children with sickle cell anemia required more structured support to shift focus after a completed step, as reflected by poorer scores in the quantitative Sequencing and Completion domains. They also required more support to stay on task, as seen by poorer ratings in the qualitative Distractibility domain. ABBREVIATIONS: PETA: Preschool Executive Task Assessment; SCA: Sickle Cell Anemia; EF: Executive Functioning

    Highly Ionized Collimated Outflow from HE 0238 - 1904

    Full text link
    We present a detailed analysis of a highly ionized, multiphased and collimated outflowing gas detected through O V, O VI, Ne VIII and Mg X absorption associated with the QSO HE 0238 - 1904 (z_em ~ 0.629). Based on the similarities in the absorption line profiles and estimated covering fractions, we find that the O VI and Ne VIII absorption trace the same phase of the absorbing gas. Simple photoionization models can reproduce the observed N(Ne VIII), N(O VI) and N(Mg X) from a single phase whereas the low ionization species (e.g. N III, N IV, O IV) originate from a different phase. The measured N(Ne VIII)/N(O VI) ratio is found to be remarkably similar (within a factor of ~ 2) in several individual absorption components kinematically spread over ~ 1800 km/s. Under photoionization this requires a fine tuning between hydrogen density (nH) and the distance of the absorbing gas from the QSO. Alternatively this can also be explained by collisional ionization in hot gas with T > 10^{5.7} K. Long-term stability favors the absorbing gas being located outside the broad line region (BLR). We speculate that the collimated flow of such a hot gas could possibly be triggered by the radio jet interaction.Comment: Minor revision (accepted for publication in MNRAS letter

    The evolution of aquaculture feed supply systems

    Get PDF
    First paragraph: As any fish farmer knows, feed is usually the most important variable production cost.&nbsp;A simple objective is therefore to minimize waste from uneaten food, which has the added benefit of reducing the risk of environmental degradation. However, decreasing feed level risks reducing growth rate, lead&igrave;ng to a rise in other costs per unit of production. The optimum biological feeding rate is thus rarely the same as the optimum economic rate. In practice, these calculations are complicated as feed requirement and efficiency of conversion varies with changing environmental conditions including water temperature, oxygen concentration, water quality, current speed, light intensity and day length. Feed utilisation also varies with diet quality and physiological factors such as age/size, life-stage, stress level and endogenous rhythms. lt is therefore not surprising that these factors contr&igrave;bute towards an element of uncerta&igrave;nty regarding the amount of feed required, often leading to under or over feeding of stock and resultant under performance of the system
    • …
    corecore